

Учебный курс

Основы Vericut v6

Би Питрон 191014 Санкт-Петербург, Виленский пер., 4 тел.: (812) 272-1666, 273-3004 (495) 580-6190 факс: (812) 272-3869 www.bee-pitron.com

Введение в Vericut

Если Вы используете интерфейс CAD/CAM, чтобы передать информацию в VERICUT, то проект уже сформирован для Вас, ваша библиотека инструмента создана, и ваша заготовка импортирована и расположена. В этом уроке мы узнаем, как загрузить предварительно сконфигурированный проект, запустить симуляцию обработки, изменять масштаб изображения и положение.

- 1. Omkpoйme npoekm vericut.vcproject
 - Запустите VERICUT
 - File > Open
 - Shortcut = Library
 - **File** = vericut.VcProject
 - Open
 - Посмотрите в **Project Tree** PE

• В Project tree, выберите Project: vericut, правой клавишей мыши, Expand All Children

Этот проект содержит 3 установки; каждая установка содержит собственный станок, систему управления, NC программы, оснастку и инструменты. Во время обработки заготовка может переходить от установки до установки.

- 2. Настроим VERICUT на остановку после каждой установки
 - В Project tree выберите Project: vericut, кликните правой кнопкой мыши, выберите Motion

• Stop At = End of each Setup

					_
🚪 Motior	ı				3
Start At	/Stop At				
Start At	Beginnir	ıg 🖌			
Stop At	End of e	ach Setup 🛛 🍟			
Stop	End		1		
Stop	Num Of	Cuts	1		
Motion		mber			
Fast Fe	Tool Ch	ange		No Animation	
Skip Cu	Program	Stop		Tool Spindle Always On	
Drill Cyc	Optional End of e	l Stop each File	~	Check Turning Spindle Direction	
Min. MoEnd of each Setup			Check Cutting Limits		
Max. Motion Dist. 1				FastMill Ignore Undercuts	
Tool					
Tool Di	splay	Translucent	~	Min. Cutter Height 0)
Control	Point	Tool Tip	~		
☑ Display Holders in Workpiece V		/iew	Calculate Min. Cutter Extension		
				Holder Clearance 0	
		ок	Арр	ly Cancel	

- Нажмите **F1**, для вызова меню **Help**. **VERICUT Help** чувствителен к контексту. В любом меню или окне нажмите **F1** для вызова справки по интересующему вас элементу.
- OK
- 3. Обработаем первую установку
 - Play to End

4. Визуально осмотрите часть

- Zoom to Box (Щелкните левой кнопкой мыши и выберите область, чтобы изменить масштаб изображения)
- Увеличим правую верхнюю часть детали

• Правой кнопкой мыши в виде Workpiece View, выберите Fit (либо значок Fit 🕅 на панели инструментов) для восстановления вида детали.

Красным показаны ошибки VERICUT. Ошибки протоколируются автоматически и помечаются красным в случае:

- Произошло столкновение режущей части инструмента и оснастки
- Инструмент прошел по детали на ускоренной (Rapid) подаче (G00)
- Произошло столкновение детали и нережущей части инструмента либо детали и державки
- 5. Обрабатываем вторую установку
 - Play to End

В Project Tree текущая установка выделяется жирным шрифтом.

6. Визуально осмотрите часть

- Zoom to Box (Щелкните левой кнопкой мыши и выберите область, чтобы изменить масштаб изображения)
- Увеличим место соприкосновения болтов и инструмента

Модель отображена в нечетком виде для быстрого масштабирования и позиционирования

7. Обновите экран

• В панели инструментов Toolbar, выберите

- 8. Обработаем последнюю установку
 - Play to End

9. Просмотрим ошибки

• Раскройте выпадающий список, все ошибки сохранены в течение сессии. Воспользуйтесь прокруткой для просмотра всего списка.

Error: Tool "5" collided with Fixture at record 145	^
Error: Tool "9" collided with Fixture at record 166	
Error: Tool "9" collided with Fixture at record 167	
Error: Tool "6" collided with Fixture at record 179	
Error: Tool "6" collided with Fixture at record 180	
Error: Tool "6" collided with Fixture at record 180	
Error: Tool "6" collided with Fixture at record 180	
Error: Tool "6" collided with Fixture at record 180	
Error: Tool "6" collided with Fixture at record 181	=
Already at end of file. Reset or rewind.	v
Already at end of file. Reset or rewind.	~

- 10. Остановка симуляции при возникновении ошибок
 - В Project tree, выберите Project: vericut, правой кнопкой мыши, Motion
 - Выберите Stop At Max Errors
 - OK
- 11. Перезапустить симуляцию
 - Reset Model

- Yes
- Play to End

Процесс обработки будет остановлен: Error, SHANK Collided with stock at record 186

- Zoom in Box (Щелкните левой кнопкой мыши и выберите область, чтобы изменить масштаб изображения)
- Приблизьте зону обработки
- В Toolbar выберите

Обратите внимание на красную отметку, сборный инструмент имеет внутри нережующую часть. Часть державки при врезании задела деталь. Этот тип погрешностей может легко быть необнаруженным на станке и приведет к повреждению инструмента и/или детали.

12. Поверните деталь

- В виде Workpiece, щелкните правой клавишей мыши, выберите Accelerated (OpenGL)
- В Панели инструмента: Dynamic X Rotation

Курсор примет следующий вид 🕻

- Левой кнопкой мыши щелкните Workpiece view и, двигая мышь ввех-вниз, вращайте модель относительно Х.
- То же самое можно проделать, используя другие клавиши вращения
- Dynamic Y Rotation
- Dynamic Y Rotation
- Dynamic XY Rotation

Для возврата курсора в режим выбора нажмите

- Левой кнопкой мыши щелкните Workpiece view и перемещайте курсор влево, вправо, вверх или вниз для вращения.
- Dynamic XY Rotation может быть активировано через горячие клавиши CTL-Shift + Left mouse
- Shift + Left mouse активирует Dynamic Pan
- **CTL** + **left mouse** активирует **Dynamic Zoom**
- Все эти опции работают в обоих видах

13. Выход VERICUT

- File > Exit
- Ignore All Changes

Контроль симуляции в VERICUT

В течение процесса обработки много процессов происходит одновременно: меняется инструмент, задается рабочее смещение, отрабатывается кадр движения и т.д. Важно это контролировать и быть уверенным, что процесс обработки правилен.

- 1. **Откроем проект vericut.vcproject**
 - File > Open
 - Shortcut = Library
 - **File** = vericut.VcProject
 - Open
 - Раскроем **Project Tree** РЕ
- 2. **Отобразим Driven Point Axis**
 - В выпадающем меню на правой клавише мыши выбираем Display Axes > Driven Point Zero

Оси обозначаются точкой "driven point" (значок 😌) и координатами X, Y, Z.

Точка DrivenPoint указывает положение координат кончика инструмента в процессе обработки. Программный ноль (Program Zero) располагается сверху по центру заготовки.

- 3. Просмотрим NC Программу
 - Info > NC Program or
- 4. Шаг NC Program до тех пор, пока первый инструмент загружен
 - Single Step > until N140T1M6

```
*
00001
N10G70
N20G0G17G40 G80G90
;T00L - 1 DIA. 0FF. - 2 LEN. - 2 DIA. - 1.
;Rough first side
N140T1M6
N145T3
N150G0G90 S10000M3
N155X6.7968Y2.05
```

Инструмент #1 загружен в шпиндель

- 5. Настроим VERICUT на остановку симуляции при смене инструмента
 - В Project tree выберите Project: vericut, правой кнопкой мыши в меню выберите Motion
 - Stop At = Tool Change, OK

Motion	_ 🗆 🗙
Start At/Stop At	
Start At Beginning	v
Stop At End	
Stop End	1
Stop Num Of Cuts	
- Motion Text	
Fast Fe Tool Change	No Animation
Program Stop Skip Cu	Tool Spindle Always On
Drill CycEnd of each File	Check Turning Spindle Direction
Min. MoEnd of each Setup	Check Cutting Limits
Max. Motion Dist. 1	FastMill Ignore Undercuts
Tool	
Tool Display Translucent	Min. Cutter Height 0
Control Point Tool Tip	×
☑ Display Holders in Workpiece	e View 🗌 Calculate Min. Cutter Extension
	Holder Clearance 0
ОК	Apply Cancel

- 6. Запустим обработку с начала
 - Reset Model 📥
 - Yes
 - Play to End
- 7. Остановка на кадре N140T1M6
 - Play to End

Остановка на кадре N4500M6

8. Уберем отображение Driven Point axis

• B окне в меню на правой кнопке мыши выберем Display Axes > Clear Axes

Симуляция будет проходить быстрее, если оси не отображаются.

9. Откроем окно статуса

Info > Status или ^①

В окне статуса отображается важная информация о процессе обработки.

Local X Y Z показывают координаты инструмента относительно программного нуля

Tool ID – активный инструмент

Time – машинное время.

Feedrate – подача, заданная в программе. В данном месте программы тип перемещения (Motion Type) задан как ускоренный (Rapid (G00)).

10. Настроим VERICUT для остановки на определенном кадре

- В Project tree выберите Setup: 3 Motion
- Stop At = Line Number
- 61, vericut_setup3.mcd
- OK

11. Запустим обработку с начала

- Reset Model
- Yes
- Play to End

Обработка оставлена на кадре 61 в 3 установке.

• Play to End 🕨

Обработка продолжится до конца программы

12. Выход из VERICUT

- File > Exit
- Ignore All Changes

🚪 Status	×
Status	
Program	vericut_setup1.mcd
Program Rec. #	263
Program Record	N4500M6
Change Rec. #	263
Change Record	N4500M6
Local X	0
Local Y	0
Local Z	11.8675
Local B	0
Local C	0
Local U	-27.5591
Tool Sequence	2
Tool ID	3
Errors	6
Warnings	1
Time	5.1797
Feedrate	150 IPM
Spindle	OFF
Coolant	OFF
Motion Type	RAPID
Abs/Inc	ABSOLUTE
Motion Plane	XY
Units	INCH
Spindle Mode	RPM
Compensation	OFF
Cycle	OFF
Interpolation	OFF
Volume Removal	0
Chip Thickness	0
	~

Управление скоростью симуляции

Симуляция большой программы занимает много времени. Есть некоторые опции для ускорения этого процесса.

- 1. **Откроем проект vericut.vcproject**
 - Запустим VERICUT
 - File > Open
 - Shortcut = Training
 - File = Fadal6030_table_setup.VcProject
 - Раскроем **Project Tree** РЕ
- 2. Удалим отображение всех осей
 - В окне в меню на правой кнопке мыши выберем Display Axes > Clear Axes
- 3. Запустим обработку
 - Play to End
- 4. Сбросим обработку
 - После остановки симуляции выберем Reset Model 📤
- 5. Установим режим поддержки аппаратного ускорения (OpenGL)
 - В Machine view в меню на правой кнопке мыши выбираем Accelerated (OpenGL)
 - Play to End

Симуляция будет происходить со скоростью движения самого медленного компонента станка. При использовании режима OpenGL VERICUT передает обработку изображения графической карте.

Перейдем только в вид Workpiece view

- 6. Reset the Cut part
 - Reset Model 📤
- 7. Обработка только в виде Workpiece view
 - View > Layout > Standard > 1 view

Layout >	Standard +	1
Orient	Add View	12
Attributes	Delete View	
Section	Cascade	2
Select/Store	Tile Horizontally	13
Axes	Tile Vertically	23
Toolbar	View To Back	12
Resolution +	View To Front 🔸	
Look & Feel 🔷 🔸	Always In Front	
Dynamic Controls 🔸		1

Play to End

Даже если станок не отображается, ошибки, связанные с ним, обрабатываются и протоколируются.

8. Выбираем обработку без анимации

- Reset Model 📤
- В Project tree, выбираем Setup: 1, в меню на правой кнопки мыши Motion
- Выберем No Animation
- OK
- Play to End 🕨

Даже без анимации все ошибки также фиксируются, как в виде Workpiece view, так и в Machine view.

Для больших программ сочетание опции **No Animation** и **Stop At: Tool change** позволяет ускорить симуляцию и контролировать обработку на каждом этапе изготовления.

Следующая опция позволяет производить анимацию, но обновляет дисплей через заданное количество кадров программы.

- 9. Обработка с обновлением изображения через каждые 100 кадров
 - Reset Model 📤
 - В Project tree, выберите Setup: 1, в меню на правой кнопке мыши HMotion (или двойным кликом)
 - Убрать No Animation
 - **Skip Cut** = 100
 - OK
 - Play to End 🕨
- 10. Выход из VERICUT
 - File > Exit
 - Ignore All Changes

Поиск и обнаружение ошибок

Основная причина использования симуляции – выявление ошибок до выхода на станок. VERICUT предлагает много способов для этого. Мы не всегда можем полагаться на красный цвет, так как он может быть удален в последующей операции обработки.

1. Откроем проект vericut.vcproject

- Запустим **VERICUT 6.0**
- File > Open
- Shortcut = Library
- **File** = vericut.VcProject
- Open
- Раскроем **Project Tree** РЕ

- 2. Настроим VERICUT на остановку симуляции при любых ошибках
 - В Project tree выберите Project: vericut, в меню на правой кнопке мыши Motion
 - Включим Stop At Max Errors

Motion			
Start At/Stop At =			
Start At Beginning	, ~		
Stop At End	~		
Stop At Max Er	rors	1	
Stop At Max W	arnings	1	
- Motion			
Fast Feed	210		□ No Animation
Skip Cut	0		Tool Spindle Always On
Drill Cycle	Full Motion	~	Check Turning Spindle Direction
Min. Motion Dist.	0.05		Check Cutting Limits
Max. Motion Dist.	1		FastMill Ignore Undercuts
- Tool			
Tool Display T	ranslucent	~	Min. Cutter Height 0
Control Point T	ool Tip	~	
Display Holders in Workpiece View		iew	Calculate Min. Cutter Extension
			Holder Clearance 0
0	ĸ	Арр	ly Cancel

- OK
- 3. Обработаем до первой ошибки
 - Play to End 🕨

• Появятся следующие сообщения:

Error, Holder "Holder1" of Tool "1" collided with stock at record 185

- Play to End
- Error, Holder "Holder1" collided with stock at record 186
- Play to End

```
Error, Holder "Holder1" collided with stock at record 200
```

Остановка на каждой ошибке исключает её пропуск, но это требует вашего постоянного внимания. На практике редко удается посвятить все время только проверке. Зачастую мы запускаем симуляцию и возвращаемся к ней только для просмотра ошибок.

4. Посмотрим в Log file

• Info > VERICUT Log... или 🚵

В нем точно указан номер записи, номер инструмента, описана ошибка и показан сам кадр.

🕅 VERICUT Log: vericut.log		×
File Edit		
کې ۳۰ کې ۲۰۰۰ کې	a 🗃	1
Wed May 17 09:04:05 2006		^

Error for line 185		
N206001X-1.425z-2.145	-	
Error: Holder "Holder1" of the tool "1" collided with stock at record	185	
urrent Tool: Seg# 2, Record# 7, Record: N140T1M6)
	/	
******************** TOOLPATH ERROR REPORT ******************		
Error for line 186		
N2070G3X-1.475Y.05R.05		=
Error: Holder "Holder1" of the tool "1" collided with stock at record	186	
Current Tool: Seq# 2, Record# 7, Record: N140T1M6		
******************** TOOLPATH ERROR REPORT ***********************		
Error for line 200		
N2260G1X-3.9Z-2.77		~
C	~ >	
Line 1		

Отчет содержит информацию сессии, тип погрешности, предупреждения и информационные сообщения о сессии проверки. Если множественные проекты моделируются на той же самой сессии, то информация будет добавлена в конец файла. Отчет очищается при перезапуске VERICUT. Файл отчета может быть переименован и сохранен.

- Закроем Log file
- 5. Настройка VERICUT для симуляции без остановок
 - В Project tree выберите Project: vericut, в меню на правой кнопке мыши Motion
 - Отжать Stop At Max Errors
 - OK
 - Play to End

• Info > Status

🐺 Status		X
Status		1
Program	vericut_setup3.mcd	^
Program Rec. #	199	
Program Record	N610M30	
Change Rec. #	186	
Change Record	N490M6	
Local X	17	
Local Y	11	
Local Z	11	
Local A	0	
Local C	180	-
Local U	0	
Local W	0	
Tool Sequence	11	
Tool ID	6	
Errors	54	
Warnings	0	
Time	8.505	
Feedrate	60 IPM	
Spindle	OFF	
Coolant	OFF	
Motion Type	RAPID	
Abs/Inc	INCREMENTAL	
Motion Plane	XY	
Linits	INCH	Y

Программа содержит 54 ошибки

6. Просмотрим их

• Analysis > NC Program Review

NC Program - vericul	_setup3.mcd	
<u>File</u> dit <u>S</u> ettings		
✓ ····································	- I I 🗞 🛁 🍤	💱 🎸 🝠 🐝 💠 💠 🍳 🍳 🔍 🐹 🕷 🕅 💙
N4901505 N49500690A90.55000N3 N500656X2.Y1.77 N510643H520.M8 N5206986812-1.73R-1.28F60. N530X2.75 N550X54.25Y1.922-1.65 N560X54.25Y1.922-1.65 N570G80 N580M5 N590G49691G2820.M9 N600G28X0.Y0.A0. N610M30		
Line 188	vericut_setup3.mca	
Errors		Zsetup
he tool "1" collided with	stock at record 185	
he tool "1" collided with	stock at record 186	
he tool "1" collided with	stock at record 200	
he tool "1" collided with	stock at record 201	
he tool "1" collided with	stock at record 210	•
he tool "1" collided with	stock at record 211	
h Fixture at record 288	5	splay Solid
4		splay On 🛛 🖌 🚽 🖌 🖌 🖛

Вам, возможно, придется растянуть окно, чтобы видеть сообщения об ошибке полностью.

- 7. Найдите кадр программы, которая вызвала столкновение с правым зажимом
 - Выберите правый зажим

Строка, содержащая ошибку подсветится серым:

N30T4M6
N32T5
N35G0G90A-90.S5000M3
N40G55X-3.5106Y-1.47
N50G43H4Z1.M8
N60G98G81Z-1.58R.1F100.
N70X2.Y-1.77
N80X2.75
N90X3.5
N100X4.25Y-1.92
N110X5.
N120G80
N130M5

И инструмент отобразится в начале данного движения

8. Выход из VERICUT

- File > Exit
- Ignore All Changes

Выявления столкновений станка

Выполнение программы на многокоординатном оборудовании имеет несколько рисков, неверные перемещения могут повредить деталь, но столкновения узлов станка могут привести к поломке станка и остановке производства. Здесь мы рассмотрим, как VERICUT позволяет предотвратить эти повреждения.

1. **Откройте проект detect_collision.vcproject**

- Запустите **VERICUT**
- File > Open
- Shortcut = Training
- **File** = detect_collision.VcProject
- Open

2. Откройте окно статуса, чтобы следить за ошибками

• Info > Status или 🛈 на панели Tool bar

🚪 Status		X
Status	<u>P</u>	1
Program	detect_collision.mcd	^
Program Rec. #		
Program Record		
Change Rec. #		
Change Record		
Machine Y	20	
Machine Z	20	
Machine A	0	
Machine B	0	
Tool ID		
Errors		
Warnings		
Time	0	
		V

3. Запустите обработку

• Play to End

🚪 Status		X
Status	👚	1
Program	detect_collision.mcd	^
Program Rec. #	54	
Program Record	N340 M30	
Change Rec. #	18	
Change Record	N40 T5 M6	
Machine Y	16.4	
Machine Z	20	
Machine A	360	
Machine B	360	
Tool ID	5	
Errors		
Warnings		
Time	4.3231	

4. Измените ориентацию вида на ZY

• В меню на правой кнопке мыши Select View > ZY

- 5. Настройте VERICUT на остановку на 38 записи, когда шпиндель приближается к оснастке
 - В Project tree выберите BProject: detect_collision, в меню на правой кнопке мыши **Motion**
 - Stop At = Line Number = 38
 - OK
- 6. Запустите VERICUT до окончания обработки
 - В Project tree выберите EProject: detect_collision, в меню на правой кнопке Motion
 - Отожмите Stop At Max Errors
 - OK
- 7. Перезапустите с начала
 - Reset Model
 - Play to End

Увеличьте, для лучшего просмотра

- 8. Пройдите пошагово, чтобы увидеть столкновение
 - Single Step >

Это столкновение шпинделя и оснастки

- 9. Настройте VERICUT для контроля таких ошибок
 - B Project tree выберите Setup:1, в меню на правой кнопке Expand All Children
 - В Project tree выберите Machine: detect_collision, в меню на правой кнопке Machine Settings...
 - Закладка Collision Detect

- тоставить Collision Detection
- Add
- Component 1 = B , поставить Sub-Components
- Component 2 = Y, поставить Sub-Components
- Near Miss = 0.100

🙀 Machine Settings 🛛 🔀					
Machine Simula	Machine Simulation On 🗌 Transparent Stock Floor/Wall Orient Y+ 🗹 Up				
Collision Detect	Collision Detect Tables Travel Limits Axis Priority				
	Collision Detection				
Ignore Collision between Cutter and Stock Active Tool					
Default Nea	r Miss		0.1	Set All	
Component 1	Sub-Compo	Component 2	Sub-Compo	Near Miss	
B		Y		0.100	
Base					
z					
X					
В					
Attach					
Fixture					
Stock					
Y	0.14		Dalata		
A	Add		Delete		
Tool		Apply	Cance	el l	

• OK

VERICUT будет определять столкновения между столом В и связанным с ним компонентами (Fixture, Stock) и компонентой Y, а также связанными с ним (spindle, tool). Комбинаций контроля очень много.

10. Перезапустим обработку

- Reset Model
- Play to End
- Single Step >

Теперь столкновение зафиксировано

Status		X
Status	· · · · · ·	1
Program	detect_collision.mcd	-
Program Rec. #	39	
Program Record	N220 G1 Z1.75 F50	
Change Rec. #	18	
Change Record	N40 T5 M6	
Machine Y	7.4	
Machine Z	11.75	
Machine A	0	
Machine B	270	
Tool ID	5	
Errors	1	
Warnings	0	
Time	2.2881	

Ошибка отображается

Error: "Fixture" collided with "A" at block: (39) N220 G1 Z1.75 F50.0

11. Выход из VERICUT

- File > Exit
- Ignore All Changes

Замер параметров при помощи X-Caliper™

В VERICUT часть может быть измерена точно так же, как в отделе технического контроля. Толщина стенки, диаметр отверстия, положение и угол любого элемента – все может быть измерено.

1. Откройте проект x_caliper.vcproject

- Запустите VERICUT
- File > Open
- Shortcut = Training
- **File** = x_caliper.VcProject
- Open
- 2. Запустите обработку
 - Play to End

3. Отобразите активную СК

- В меню на правой кнопке мыши **Display Axes > Active Coord. Sys.**
- 4. Используйте X-Caliper для определения элемента
 - Analysis > X-Caliper...
 - Feature/History

🖌 X-Caliper	X
- X-Caliper ——— 📉 🕅 🔮 🐀 🗃	0
Feature/History	*
Feature/History	
Distance/Angle	
Stock Thickness	
Air Distance	
Closest Point	
Scallop	
Volume	
Stock/Design Distance	
Highlight Same Plane	
Active Coordinate System	
Machine Origin	

• Color = 1:Red, выбранный элемент подсвечен красным

• Выберите наклонную плоскость, как показано ниже

Координаты выбранного элемента смещены относительно активной СК. Перезадайте активную СК

5. Смена активной СК и анализ различных элементов

- В окне в меню на правой кнопке мыши, Set Active Coord. Sys. > inclined
- Выберите поверхность, как в предыдущем шаге

Обратите внимание на координаты и вектор нормали

- 6. Замер угла более мелкого элемента
 - В панели X-Caliper выберите Distance/Angle
 - From = Plane
 - To = Plane

🕌 X-Calipe	r 🔀	
- X-Caliper —— 📉 📖 💙 🖿 🗃		
Distance/Angle		
From 🕓	Plane 🖌	
Location	000	
Direction	001	
To 🔍	Plane 👻	
Location	000	
Direction	001	

• Выберите указателем 🦄 следующим за From переднюю плоскость элемента

• Выберите указателем 🗟 следующим за То второй элемент

🙀 X-Calipe	r 🔀			
X-Calipe	er 🔊 🏛 💙 🐀 🖪 🧐			
Distance	'Angle 🛛 🖌			
From 👒	Plane 👻			
Location	57.2295 -92.345 -11.3351			
Direction	0.707107 -0.441728 0.55215(
То 🔊	Plane 👻			
Location	50.8517 -5.8166 -4.6533			
Direction	0 -0.624698 0.780867			
 Distance/Angle From Plane Location 57.2295 -92.345 -11.3351 Direction 0.707107 -0.441728 0.55 To Plane Location 50.8517 -5.8166 -4.6533 Direction 0 -0.624698 0.780867 Angle = 45 				
Active Coordinate System				
inclined				

7. Замер параметров кармана

- В меню **X-Caliper** выберите **Air Distance**
- Увеличьте изображение, если необходимо
- Выберите стенки внутри кармана
- Толщина: ..., ширина: ...

- Замерьте диаметр отверстия, должно быть: ...
- 8. Замер расстояния между центром отверстия и краем поверхности

- В меню X-Caliper выберите Distance/Angle
- From = Edge
- To = Axis
- Указателем 🗟 укажите From
- Укажите обе поверхности, образующие грань.

- •
- Указателем 🗟 укажите положение **То** Укажите внутри отверстия, стрелкой будет показан центр •
- Дистанция должна быть..... и угол •

9. Выход из VERICUT

- File > Exit •
- Ignore All Changes

Сравнение обработанной заготовки с моделью детали (AUTODIFF)

Когда деталь представляет из себя совокупность связанных поверхностей или состоит из огромного количества элементов построений, проще сделать сравнение с оригиналом модели из CAD системы. Это может быть решено при использовании модуля VERICUT AUTO-DIFFTM.

1. Откройте файл AUTODIFF.vcproject

- Запустите VERICUT
- File > Open
- Shortcut = Training
- **File** = AUTODIFF.VcProject
- Open
- 2. Запустите обработку
 - Play to End

- 3. Рассеките часть
 - View > Section
 - Add
 - Pl Type = NEG Y, Color = 2:Aquamarine
 - Section

- 4. Воспользуйтесь X-Caliper для анализа
 - Analysis > X-Caliper...
 - Feature/History
 - Display Tool/Stock Collisions ¹/₂

Красным показаны места контакта державки и модели

• Выделяя красные участки, можно увидеть номер записи

- Выйдем из X-Caliper 🐌
- 5. Восстановим вид заготовки
 - View > Section
 - Restore
 - Close

6. Сравним заготовку с моделью

- Analysis > AUTO-DIFF...
- Compare

- 7. Отобразим САД модель
 - Выберем **Design Display**

В САД модели нет отверстий и проточенных канавок.

- 8. Сравним профиль в 2D
 - В меню на правой кнопке мыши View Type > Profile
 - В панели AUTO-DIFF Comparison Method = Profile
 - Compare

Только токарные модели могут проверяться таким способом.

9. Замерим толщину зарезов

- Analysis > X-Caliper
- Stock Thickness
- Курсором выделим зону зареза.

Результаты сравнения AUTO-DIFF могут быть измерены, сохранены и экспортированы обратно в систему автоматизированного проектирования.

10. Выход из VERICUT

- File > Exit
- Ignore All Changes

Обнаружение зарезов во время обработки

Как мы видели в предыдущем уроке, мы можем с помощью AUTO-DIFFTM сравнить обработанную деталь и CAD модель. Даже учитывая, что полный анализ детали рекомендован после обработки, обнаружение ошибок можно производить и во время обработки.

1. Откройте файл AUTODIFF2.vcproject

- ЗапуститеVERICUT
- File > Open
- Shortcut = Training
- **File** = AUTODIFF2.VcProject
- Open
- 2. Настройте VERICUT для обнаружения зарезов во время обработки
 - Analysis > AUTO-DIFF...
 - Закладка Constant Gouge Check
 - Tolerance= .010
 - Выберите Оп
 - Close
 - Play to End

Все сообщения о зарезах модели протоколируются

- 3. Сделайте окончательную проверку при помощи AUTO-DIFF
 - Analysis > AUTO-DIFF...
 - Закладка Constant Gouge Check
 - Отожмите **On**
 - Yes

- 4. Используйте AUTO-DIFF используйте метод сравнения плоскостями для раскраски толщин зарезов
 - Settings
 - Comparison Method = Surface
 - Compare

Цвета зарезов соответствуют таблице допусков

Comparison T	alaranaa		
Companson	olerance		
	Range	Color	
	1.00000	5:Plum	
	0.10000	1:Red	
	0.06000	6:Light Gol	
	0.03000	4:Cornflow	
	0.01500	3:Light Ste	
	0.01000	2:Aquamari	
	0.00500	7:White	
	Add	Delete	

- 5. Выход из VERICUT
 - File > Exit
 - Ignore All Changes

Расчет минимальной длины инструмента

Одной из самых трудоемких задач для программиста ЧПУ - подбор инструмента. Инструмент должен быть как можно жестче. Для 3-х координат задача простая, для 5-ти, когда контур непостоянен, точный подбор является почти невозможным. В этом примере мы будем использовать VERICUT для расчета минимальной длины инструмента, чтобы избежать столкновений при обработке.

1. **Откройте проект mincut.vcproject**

- Запустите VERICUT
- File > Open
- Shortcut = Training
- **File** = mincut. VcProject
- Open
- 2. Запустите обработку и посмотрите, где оправка задевает деталь
 - Play to End

- 3. Настроим VERICUT для расчета минимальной длины инструмента
 - Откроем **Project Tree** РЕ
 - В Project tree выберите Setup: 1, в меню на правой кнопке мыши Motion
 - Выберем Calculate Min. Cutter Extension
 - Holder Clearance = 2
 - OK
 - Reset Model
 - Play to End
 - No (мы не сохраняем результат)

• В окне сообщений смотрим: Tool 1's first holder height has been adjusted by 6.320287

ВАЖНО: В процессе расчета длины инструмента, сборка инструмента меняется во время обработки. <u>Мы можем</u> не увидеть реального зареза державкой.

- 4. Выход из VERICUT
 - File > Exit
 - Ignore All Changes

Оптимизация подачи

Когда мы удостоверились, что в программе нет столкновений и зарезов, мы можем посредством VERICUT оптимизировать подачу. В этом примере мы будем использовать библиотеку инструмента с уже готовыми параметрами. Попробуем применить эти параметры и оптимизировать программу.

1. **Откроем проект blade.vcproject**

- Запустим VERICUT
- File > Open
- Shortcut = Training
- **File** = blade.VcProject
- Open

2. Onpedeлим Working Directory

- File > Working Directory...
- Проверьте, есть ли у вас права на этот каталог.
- Измените каталог, если необходимо.
- OK

3. Включите OptiPath®

- OptiPath > Control...
- OptiPath Mode = On
- **Optimize File** = blade.opti

Это имя новой, оптимизированной программы.

Замечание: OptiPath создает траекторию с такими же перемещениями; траектория не меняется, только подачи перезадаются в соответствии с условиями обработки.

• Material = Aluminum

Библиотека инструментов может содержать любые параметры в зависимости от материала.

• OK

OptiPath turned on	Image: A state of the state	

4. Посмотрим как меняется подача в Status window

• Info > Status

🚪 Status		X
Status	**	1
Program	blade.MPF	
Tool Sequence	0	
Feedrate		
OptiPath Feed		
Time	0	
OptiPath Time	0	
Motion Type	RAPID	
Abs/Inc	ABSOLUTE	
Units	METRIC	
Cycle	OFF	
		~

- 5. Запуск оптимизации вместе с обработкой
 - Play to End
Обратите внимание, подача понижается при большой глубине и повышается при малой.

V Status		
Status	🖀 📢	J
Program	blade.MPF	
Tool Sequence	e 1	
Feedrate	300 MMPM	
OptiPath Feed	5080.00	
Time	157.7475	
OptiPath Time	75.8651	
Motion Type	LINEAR	
Abs/Inc	ABSOLUTE	
Units	METRIC	
Cycle	OFF	

По окончании обработки мы видим, что OptiPath сократил время обработки на 50%.

- Yes для сброса обработки VERICUT и замены текущей программы на оптимизированную
- Закройте окно Status
- Play to End

6. Разделение подачи по цвету

- Edit > Colors...
- Закладка Cut Colors
- Color Method = Feed Range Color

🛂 Color								
Assign Cut Colors Define								
Color Method Feed Range Color								
-								
	Feed	Color						
	0.0	34:Golden						
	120.0	35:Tomato						
	160.0	36:Blue Vi						
	200.0	37:Chocol						
	240.0	38:Mediu						
	280.0	39:Violet						
	320.0	29:Dark Vi						
	Add	Delete						
ОК		Apply C	ancel					

• OK

Большая глубина выделена белым цветом (менее 120 ММРМ), меньшая – темно фиолетовым (больше 320 ММРМ).

- 7. Выход из VERICUT
 - File > Exit
 - Ignore All Changes

Привязка оснастки и заготовки

В этом примере мы рассмотрим, как добавить оснастку и заготовку (деталь) в текущую установку существующего проекта.

1. Откройте файл проекта define_stock_fixture.vcproject

- Запустите VERICUT
- Установите Working Directory выбором иконки 🖄
- File > Open
- Shortcut = Training
- **File** = define_stock_fixture.vcproject
- Open
- Откроем **Project Tree** выбором иконки **P**E
- В Project Tree, правой кнопкой мыши Setup 1 и выберем Expand All Children

2. Добавим оснастку

- В Project Tree выбираем **Ф**Fixture (0, 0, 0) и закладку Model
- В панели Modeling выбираем Type = Model File
- Browse...
- **Open** file, **Shortcut = Training**
- Выберите *fixture_two_jaws.stl*, **Open**, **Add**

3. Добавляем заготовку

- Для этого в **Project Tree** выбираем 🗇 Stock
- В панели Modeling закладка Model выбираем Type = Block, и пишем:

Учебный курс Основы VERICUT V6 Length (X) = 3.375 Width (Y) = 2 Height (Z) = 2.5

- Add
- **OK** в панели **Modeling**
- В окне Workpiece View в меню на правой кнопке мыши Fit
- Закрываем Project Tree 4

4. Выставим опцию OpenGL

• В меню на правой кнопке мыши в Machine view и выбираем Accelerated (OpenGL)

5. Сохраним проект

- Можно через иконку 🕎
- File = my_project
- Save
- 6. Запустим обработку
 - Play

Перемещение моделей оснастки и заготовки на станок

На этом уроке мы научимся создавать модель заготовки вытянутой формы и использовать инструменты позиционирования VERICUT для размещения моделей оснастки и заготовки на станке.

1. Откроем файл нового проекта

- Запустим **VERICUT**
- File > New Project > Inch
- Установим свою Working Directory нажатием_ на иконку 🖄
- Отобразим **Project Tree** нажатием на иконку **P**E
- В Project Tree кликнем правой кнопкой мыши на Setup 1 и выберем Expand All Children из выпадающего меню

2. Добавим оснастку

- В Project Tree дважды кликнем на **Fixture** и выберем Model Tab
- В панели Modeling выберем Type = Block
- Length (X) = 4
- Width (Y) = 1
- Height $(\mathbf{Z}) = 1$
- Add
- Кликнем правой кнопкой мыши в Workpiece View и выберем Fit

3. Добавим заготовку при помощи Sweep Model

Sweep model (тело вращения) или Extruded model (тело вытягивания) используется для представления заготовки.

Учебный курс Основы VERICUT V6

- В **Project Tree** кликнем на ¹ Stock
- В панели Modeling на вкладке Model выберем Type = Model File
- Sketcher...
- В окне Profile Type выберем Sweep > OK

Создание Sweep model с использованием профайла описано ниже. Модель должна иметь толщину Z 3.375.

• Растяните окно так, чтобы все колонки были видны, и убедитесь, что значение Grid Size равно .125

😡 Sweep Profil	•			×
<u>F</u> ile				
Entity X	Y	Radius	Arc Direction	
				O Arc ● Pt
				0.875 Arc Direction Shortest Y
Add	Delete	Delete Al	I Import DXF	X -1.25 Grid Size 0.125
Fillet Size 0		Create	Fillet Remove Fillet	elements defined
	Z	min O	Zmax 0	

- Add (создается точка X0, Y0)
- Двигая курсором по сетке, выберите точку X0, Y1 (при движении курсора будут отображаться значения на осях)

- Выберите точку X0.125, Y1
- Выберите точку X0.125, Y1.25

🙀 Sweep P	rofile						×
Eile							
Entity	X	Y	Radius	Arc	Direction		
Point	0	0					
Point	0	1					
Point	0.125	1					
Point	0.125	1.25					
							Arc OPt
							Y 1.25 Arc Direction Shortest
Add		Delete	Del	ete All	Import DXF	J	Ĺ, X 0.125 Grid Size 0.125 Incl
Fillet Size	0		C	reate Fillet	Remove Fi	llet	no elements defined
			Zmin	0	Zma	ax O	

• Выберите точку X2, Y1.25

Для удобства используйте вид **Pan**⁺, (для возврата курсора к режиму выбора выберите 3).

- Выберите точку X2, Y-1.25
- Выберите точку X0.125, Y-1.25
- Выберите точку X0.125, Y-1
- Выберите точку Х0, Ү-1
- Выберите точку Х0, У0

🙀 Sweep Pr	ofile						
<u>F</u> ile							
Entity	X	Y	Radius	Arc Direction			
Point	0	0					╸╺┝┑╸┝┥╸┾┥╸╅╺╢╸┥ ┍╺┝┑╸┝┥╴┾┥╸╪╺╢╸┪
Point	0	1				= b =] = b = = b =	╸╾┝╾┫╺┝╌┫╸┝╌┫╸╋╺╢╸┫ ┍╺╢╾┓╺┝╌┫╸┾╶╣╸╋╺╢╸┩╶ ┠╝
Point	0.125	1					╸┥╾╸╾┝╶┥╴┾╶┥╴╫╺┼╺┤╸┥ ┝╶┥╾┑╴┝╶╡╴┾╶┥╴╫╺┼╺┤╸┥
Point	0.125	1.25				╎╾╞╌╣╾ ┽╺╎╾ ┽╼┝╸┥╼┝╺┥╸ ╵╾╞╍┥╾╺┥╴┥╾┝╺┥╼┝╺┥╸	╶╌╌╸╸┝╶┤╸┼╶┤╸┼╶┤╴┤
Point	2	1.25				╡╸╊╶┫╸╋╺╬╸╉╺┝╴┫╺┝╺┨╸ ╕╴┺╺┨╸╋╺┨╸╋╺┝╴┫╺┝╺┨╸	
Point	2	-1.25					
Point	0.125	-1.25					
Point	0.125	-1					
Point	0	-1					╶╶┥╴┫╺┝╶╡╸┾╶╡╸╅╺┧╸┪╺┻ ┍╺╎╾┫╺┝╶┪╸┾╶╣╸╅╺┧╸┪
Point	0	0					
						••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • •
					Y -1	Arc Direction	Shortest V
Add		Delete	Delete A	All Import DXF	Ĺ, X 1.375	🗹 Grid Size	0.125 Inc
Fillet Size)		Create	Fillet Remove Fille	et		
			Zmin 0	Zmax	(0		

- Толщина Sweep model: Zmax 3.375in
- **File** > **Save As** > *profile_stock.swp* > Save
- File > Close
- В окне моделирования выберите Model File > Browse
- Select *profile_stock.swp* > Add
- Кликнем правой кнопкой мыши в Workpiece View window и выберем Fit

4. Позиционирование Sweep Model

Для позиционирования модели заготовки в оснастке мы используем Assemble Tab на вкладке Position.

На вкладке Position выберите Assemble •

Мы разместим модель заготовки в оснастке с тремя ограничениями.

Первое ограничение

- Constraint Type = Mate Выберите стрелку, следующую за Constraint type •

	Constraint Ty	Offset	
	Vate	*	0
S	Vate	~	0
	Mate	~	0
	Reset		Undo

Соединим выступ с поверхностью оснастки.

Переместите курсор на уступ, нажмите левую кнопку мыши, когда вектор будет выровнен •

Переместите курсор наверх оснастки и выделите плоскость •

Заготовка переместится так, чтобы две выбранные поверхности находились в одной плоскости, но в противоположном направлении (для ясности вид был развернут).

Второе ограничение

- Constraint Type = Mate
- Выделите вторую стрелку 🕅 после Constraint type
- Выделите поверхности на заготовке и оснастке, как показано ниже

Совет: Разверните вид, чтобы выделить плоскость оснастки.

Заготовка переместится

Третье ограничение

- Constraint Type = Align
- Выберите третью стрелку 🗟 после Constraint type
- Выберите поверхности на заготовке и оснастке, как показано ниже

Заготовка переместится

5. Добавление второго зажима оснастки

Чтобы закончить сборку Заготовка/Оснастка, необходимо добавить зажимной кулачок.

- В Project Tree кликните снова на Fixture
- В панели Modeling перейдите на вкладку Model
- Add (в дерево проектов к компоненту Fixture будет добавлен второй идентичный блок)

- В панели Modeling перейдите на вкладку Position
- Вкладка **Translate**
- Выберите поле From, выделите левый верхний угол оснастки

• Выберите поле То, выделите угол уступа заготовки

Оснастка переместится

• Нажмите **OK** в окне Modeling

Загрузка NC программ и размещение программного нуля

Этот урок покажет, как загружать NC программы и как размещать программный ноль (Program Origin).

1. Откроем файл проекта load_nc_program_set_origin.vcproject

- Запустим VERICUT
- File > Open
- Shortcut = Training
- **File** = load_nc_program_set_origin.vcproject
- Open
- Установим Working Directory нажатием на иконку 🖄
- Отобразим **Project Tree** нажатием на иконку РЕ
- В Project Tree кликнем правой кнопкой мыши на Setup 1 и выберем Expand All Children из выпадающего меню

2. Загрузка NC программ

- В Project Tree кликнем правой кнопкой мыши на NC Programs
- Выберем Badd/Modify NC Programs...
- В окне NC Program выберем Add
- В папке **Training** выберем op1.mcd
- OK
- OK

3. Onpedenenue Program Origin

Эта программа написана на основе абсолютного нуля станка и использует рабочее смещение G55 для определения программного нуля. В этом случае NC программа использует центр В-оси как ноль программы. Для установки G55 создается таблица рабочих смещений от компонента Tool к компоненту В.

- В Project Tree кликните правой кнопкой мыши на Setup 1
- Выберите **^C**G-code > Setting
- В окне G-code Settings перейдите на вкладку Tables
- Дважды кликните на Job Tables
- Table Name = Work Offsets
- Subsystem ID = 1
- Register = **55**
- Проверьте Select From/To Locations
- From = *Component* > *Tool*
- To = Component > B
- Add, Close
- OK

		Table Name	Work Of	fsets	~	
		SubSystem ID	1		~	
		Register:	55			
		SubRegister:	1			
From Fo	Component	Name Tool B	✓	0 0 0 0		
] Calcula	te when Used		
er Off:	set (or select 2 p	oints)				

- 4. Запуск симуляции
 - Нажмите **Reset** \triangleq
 - Play 🕨

Загрузка библиотеки инструментов

На этом уроке вы научитесь загружать библиотеку инструментов в VERICUT.

1. Откроем файл проект load_tool_library.vcproject

- Запустим VERICUT
- File > Open >
- Shortcut = Training
- **File** = load_tool_library.vcproject
- Open
- Установим Working Directory нажатием на иконку 🖄
- Отобразим **Project Tree** нажатием на иконку **P**E
- В Project Tree кликнем правой кнопкой мыши на Setup 1 и выберем Expand All Children из выпадающего меню

2. Загрузим Tool Library

- В Project Tree кликнем правой кнопкой мыши на Tooling 🕏
- 📛 Open...
- Выберем matsuura_mam72.tls
- Open
- 3. Запустим симуляцию
 - Нажмем Reset 📤
 - Play

Создание ссылки к главной библиотеке инструментов

Этот урок покажет вам, как используется главная библиотека инструментов (Master Tool Library) NC программой.

1. Откроем файл проекта Create_cross_reference_tool_library.vcproject

- Запустим VERICUT
- File > Open >
- Shortcut = Training
- **File** = Create_cross_reference_tool_library.vcproject
- Open
- Установим Working Directory нажатием на иконку 🖄
- Отобразим **Project Tree** нажатием на иконку **Р**Е
- В Project Tree кликнем правой кнопкой мыши на Setup 1 и выберем Expand All Children из выпадающего меню

2. Загрузим Tool Library

Мы уже загрузили библиотеку инструмента, в нет соответствия Tool ID номерам инструментов в NC программе.

- В Project Tree кликните правой кнопкой мыши на Tooling 🕏
- **<u><u></u><u></u>O**pen...</u>
- Shortcut = Training
- Выберите matsuura_mam72_master.tls
- Open

3. Ссылку NC Program Tool изменим на Tool Library

- В Project Tree кликните правой кнопкой мыши на NC PROGRAMS
- Выберите Add/Modify NC Programs
- B окне NC Program установите Tool Change By > List
- Нажмите кнопку Use Tool List

anc nos a	m			×		
NC Program Type	G-Code Data	~	Use Selecte	d Files		
Tool Change By	List	~	Initial Tool			
			Tool Overrid	e 🔽		
NC Program			NC Program Origin	Curve Fit		
op1.nc			None			

• В окне Tool Change List выберите Build Tool List ** VERICUT создает список инструментов, основанный на тех инструментах, которые были вызваны из NC программы. Список автоматически обновляется соответствующими идентификаторами инструментов. Остаток списка пользователь может заполнить сам.

4. Заполним список Tool Change

Event	Cutter ID	Holder 1
1	149	149
3	213	213
4	152	152
6	168	168
7	59	59
8	169	169

🖬 Tool Change List 🛛 🔀							
List Tool Change By Pocket	Num.	~					
Event	Cutter ID	Holder ID	OptiPath Setting				
2	2	2					
5	5	5					
1	149	149					
3	213	213					
4	152	152					
6	168	168					
7	59	59					
8	169	169					
10	10	10					
Add	D	elete	Clear				
Prompt for OptiPath settings while building the tool list.							
Skip Duplicate Cutter Des	scriptions						
OK	Build	Tool List	Cancel				

- OK
- OK
- 5. Запустим симуляцию
 - Нажмите **Reset** \triangleq
 - Play 🕨

Урок 17 Конфигурация установки VERICUT

Этот урок предназначен для описания конфигурирования установки VERICUT. Пользователь начинает работу с шаблоном проекта, который содержит только файлы станка и системы управления. Затем пользователю показывается, как загрузить модели заготовки и оснастки, NC программу, установить программный ноль, загрузить библиотеку инструментов и запустить симуляцию.

- 1. Cmapm Configure_vericut_setup.vcproject
 - Запустите VERICUT
 - Установите Working Directory нажатием на иконку 🖄
 - File > Open
 - Shortcut = Training
 - **File** = configure_vericut_setup.vcproject
 - Open
 - Отобразите **Project Tree** нажатием на иконку PE
 - В Project Tree кликните правой кнопкой мыши на Setup 1 и выберите Expand All Children из выпадающего меню

2. Добавление оснастки

- В Project Tree дважды кликните на **Fixture** и выберите вкладку Model
- В панели Modeling выберите **Type = Model File** Browse ...
- В окне **Open** выберите **Shortcut = Training**
- Выберите vericut_setup_fixture.stl, Open, Add

3. Добавление заготовки

- Чтобы добавить заготовку, в **Project Tree** нажмите на 🗇 Stock
- B панели Modeling на вкладке Model выберите Type = Block, и введите:
 - Length (X) = 3.75
 - Width (Y) = 1.75
 - Height $(\mathbf{Z}) = 2.5$
- Нажмите Add
- На вкладке Position выберите Assemble, чтобы привязать (Mate/Align) заготовку к модели оснастки
- Первое Align левая плоскость заготовки к левой плоскости оснастки

• Второе – Mate – верх заготовки к низу оснастки

• Нажмите OK в панели Modeling

4. Загрузка Tool Library

- В Project Tree дважды кликните на *Tooling* 洯
- В Tool Manager выберите File > Open
- Выберите vericut_setup.tls
- Open
- File, Close, ответьте YES на вопрос

- 5. Загрузка NC программы
 - В Project Tree кликните правой кнопкой мыши на NC Programs

- Выберите Add/Modify NC Programs...
- В окне NC Program выберите Add
- В папке **Training** выберите vericut_setup.mcd
- OK
- OK

6. Определение начала системы координат

Программный ноль (Program Zero) для этой детали расположен в левом верхнем углу. Точка программного ноля будет определена системой координат. Затем в G-code таблице установок будет определено рабочее смещение G54.

- В Project Tree кликните правой кнопкой мыши на Setup 1
- Выберите Coordinate System > Define
- Следом за Coordinate System Name напечатайте Program Zero
- Attach Coordinate System To : Stock
- Кликните в поле Position (оно выделено желтой рамкой), укажите верхний угол

• OK

- 7. Onpedenenue Program Origin
 - В **Project Tree** кликните правой кнопкой мыши на **Setup 1**
 - Выберите **[↓]**[∠]G-code > Setting
 - B окне G-code Settings перейдите на вкладку Tables
 - Дважды кликните на Job Tables
 - Table Name = Work Offsets
 - Subsystem ID = 1
 - Register = **54**
 - Проверьте Select From/To Locations
 - From = *Component* > *Tool*
 - To = CSYS > Program Zero
 - Add, Close
 - OK
- 8. Выставим опцию OpenGL
 - Кликните правой кнопкой мыши на графической области Machine view и выберите Accelerated (OpenGL)
- 9. Сохранение проекта
 - Сохраните проект нажатием на иконку 🔛
 - File = my_setup.vcproject
 - Save
- 10. Запуск установки
 - Play

Настройка и генерация отчета

Этот урок продемонстрирует, как настроить существующий шаблон Vericut отчета, который представлен в CGTech библиотеке. Целью занятия будет перестройка существующего шаблона под специфические данные.

1. Откроем ту_setup.VcProject

На этом уроке мы можем использовать vcproject file, с которым мы работали на предыдущем уроке.

- Запустите VERICUT
- Установите Working Directory нажатием на иконку 🖄
- File > Open
- Shortcut = Training
- **File** = my_setup.vcproject
- Open

2. Выберем шаблон отчета, заданный по умолчанию

• **Project > Report > Report Template > Edit** (будет открыт шаблон отчета, заданный по умолчанию)

Примечание: Если имя шаблона не появляется в списке...

- Из окна шаблона отчета выберите File > Open
- Убедитесь, что ярлык настроен на Library
- Выберите Vericut_basic.VcTemplate, затем нажмите кнопку Open (или дважды кликните по имени файла)
- File > Save As modified_basic.VcTemplate в вашу рабочую директорию.

Настроим шаблон, добавив логотип компании

- Выделите верхнюю строку шаблона, нажав на окошко слева от типа категории
- Кликните правой кнопкой мыши и выберите Add > Picture
- В диалоговом окне изображения убедитесь, что выпадающий список установлен на From File и нажмите Browse.
- Shortcut = Training
- File = Sample_logo.jpg
- Оставьте размер рамки установленным на 0, так же как и настройки высоты и ширины.
- OK, (новая линия будет добавлена к шаблону ниже верхней строки с заданной по умолчанию категорией **Body**)
- Кликните на поле **Body**, чтобы раскрыть выпадающий вниз список.
- Кликните левой кнопкой мыши по полю **Box**, следующим за **Body**, и, удерживая кнопку, перетащите в верхнюю часть формы.
- Выберите First Page Header.

4. Изменим заглавие отчета

- На второй строке выделим слова VERICUT Report и изменим его на Shop Floor Report (нажмите Enter).
- 5. Изменим формат даты и времени
- 56

3.

- Выделите третью строку в форме и дважды кликните на Custom Table.
- Выделите поле Full Date и кликните по нему правой кнопкой мыши, чтобы отобразилось выпадающее вниз меню.
- Выберите Insert Text > Date > Short

Table			×		
Table Custom T	able		~		
No. of Columns	2				
No. of Rows	1				
Alignment	[Fi Table Width Border Size Thumbnail Width	Insert Row Insert Column Delete Row Delete Column Insert Text	ls String		
	Row Height Maximum Rows/Pa OK	0 Pix age 0 Cancel	Date Time Page Number File Name Process Data Tool Change Data	•	Short "2/23/06" Medium "Feb 23, 2006" Long "February 23, 2006" Full "Thursday, February 23, 2006"

- Кликните правой кнопкой мыши на поле [Long Time].
- Выберите Insert Text > Time > Short
- OK
- Нажмите Save для сохранения вашего текущего шаблона.
- 6. Запуск установки
 - Play to End 🕨

Shop Floor Report

7. Создадим НТМL отчет

- В главном меню выберем File > Create Report > HTML
- Введем имя файла отчета и место его размещения.
- Заголовок вашего нового отчета должен выглядеть следующим образом:

Экспорт обработанной детали в САD систему

Этот урок покажет, как экспортировать обработанную модель в IGES формат, который Вы сможете прочитать в CAD системе.

1. Откроем файл проекта model_export.vcproject

- Запустите VERICUT
- File > Open
- Shortcut = Training
- **File** = model_export.VcProject
- 2. Описание шагов
 - В окне симуляции кликните правой кнопкой мыши, выберите Display Axes > Clear Axes
- 3. Сконфигурируем VERICUT для запуска в режиме Model Export Cut
 - File >Properties: General tab
 - OTMETTE Model Export Cut Mode
 - На вкладке Tolerance измените точность Cutting Tolerance: 0.02
 - OK
- 4. Обработаем NC Program до конца
 - Play to End

- 5. Экспортируем обработанную модель в IGES файл
 - File > Save Cut Stock > CAD Model ...
 - На вкладке Setting:
 - § Output File > my_cad_model.igs
 - Измените Method > Features and Patches
 - На вкладке **Options**:

§

- § Установите галочку Preview and Combine Patches
- 2. Выберите Output
 - Обработка IGES файла может занять несколько минут.

Опция **NURBS Only** полезна для создания выходного IGES файла, совместимого с большинством известных CAD систем.

🔽 Ехро	rt Cut Stock	- X	Expor	rt Cut	Stock	_ D ×	
Settings O	ptions		Settings Opt	lions			
Output File		Browse	Grid Count	10			
model_exp	ort.igs		Global Angle	30			
File Type	IGES	~	Tolerance	0.05			
File Format	Binary	~	Group by	Color 📃 D	etect Scallop P	Planes	
Output Color	Green		Preview a	nd Combine	Patches		
Output Solid			- Filter Featur	es			
Stock	Stock	~	Torus	Torus Sw	eep E	Ilipse Sweep	
Coordinates	Stock	~	Plane	Cone	Cylinder	Sphere	
Units	Inch	v	More			1855	
Nethod	Features and Patches	Image: A start of the start				Less	
Арр	ly Output	Close	Apply		Output	Close	

6. Редактируем Model Export файл перед обработкой

После этой операции потребуется очень много времени для редактирования экспортированной модели. Чтобы уменьшить необходимость редактирования модели в вашей CAD системе, VERICUT Model Export имеет несколько инструментов, которые помогут вам соединить участки поверхности и дуги вместе. Это занятие покажет вам, как соединить некоторые из участков поверхности вместе в нужном порядке, чтобы уменьшить количество деталей, которые генерируются в IGES файле.

- § В окне **Preview and Combine** выберите
- § Выберите первую поверхность слева в подсвеченной области

- § Используйте среднюю кнопку мыши и выделите смежные поверхности
 § Выделяйте смежные поверхности средней кнопкой мыши до тех пор, по
- § Выделяйте смежные поверхности средней кнопкой мыши до тех пор, пока все панели станут выделенными. Чтобы закончить выделение, кликните левой кнопкой мыши на любой другой поверхности.

§ Нажмите OK в окне Preview and Combine Обработка IGES файла может занять несколько минут.

7. Запустим новую VERICUT сессию и загрузим IGES файл как модель заготовки

• File > New Project > Inch

Если потребуется, ответьте следующим образом: Reset cut model? Yes / Save changes? No

- Кликните правой кнопкой мыши на вкладке Model Definition: Import
- **IGES File**= my_cad_model.igs
- Add
- Cancel
- 8. Выход из VERICUT
 - § File > Exit
 - § Ignore All Changes

Загрузка станка и системы управления

Файл станка (Machine) содержит всю кинематическую информацию для запрограммированного движения станка. Файл системы управления (Control) содержит все правила для эмулирования реального управления станком.

1. Откроем файл проекта load_machine_control.vcproject

- Запустите VERICUT
- File > Open
- Shortcut = Training
- **File** = load_machine_control.vcproject, **Open**
- Отобразите Project Tree PE
- 2. Загрузим файлы Machine и Control
 - B Project tree выберите Setup: 1, кликните правой кнопкой мыши, выберите Expand All Children

- В Project tree выберите CNC Machine, кликните правой кнопкой мыши, выберите CNC Machine...
- Под Machine, Browse...
- Shortcut = Training
- **File** = sun5hm01.mch, **Ok**
- Под Control, Browse...
- Shortcut = Library
- **File** = fan15im.ctl, **Ok**
- OK
- 3. Изменим вид на Machine/Cut Stock
 - В Workpiece window кликните правой кнопкой мыши, выберите View Type > Machine/Cut Stock
 - Reset Model

4. Pasmeщenue NC Program Origin

- В Project tree выберите Setup: 1, кликните правой кнопкой мыши, выберите G-Code > Settings, вкладка Tables
- Add/Modify
- Table Name = Program Zero
- Выделите Select From/To Location
- From: Component, A
- To: CSYS, program_zero
- Add
- Close
- OK
- 5. Обработаем NC program
 - Play to End

- 6. Выход из VERICUT
 - File > Exit
 - Ignore All Changes

Добавление второй установки

Несколько деталей не могут быть обработаны на станке только в одной установке. Очень часто деталь должна быть переориентирована или даже перемещена на другой станок. На этом уроке мы развернем профиль детали на 2-х осевом токарном станке, а затем выполним обработку на 3-х осевом станке.

1. Откроем файл проекта turning_setup.vcproject

- Запустим VERICUT
- File > Open
- Shortcut = Training
- **File** = turning_setup.VcProject
- Отобразим **Project Tree** PE
- 2. Обработаем деталь, развернем профиль
 - Play to End 🕨
- 3. Импортируем Milling установку
 - В Project tree выберите BProject: turning_setup, кликните правой кнопкой мыши, выберите Import Setup...
 - Shortcut = Training
 - **File** = milling_setup.VcProject

По умолчанию выбирается Setup 1. Если Вы выберете файл проекта с несколькими установками, Вы сможете выбрать определенную установку для импортирования.

- Import
- Close

Установка импортируется в **Project Tree**

🗽 Project Tree	
Project	
 ■ Project : turning_setu ● Setup : 1 ● Setup : milling_setup 	ір :1

4. Обработаем деталь, операция фрезерования

• В Project tree выберите Project: turning_setup, кликните правой кнопкой мыши, выберите Expand All Children

Под компонентом Stock будет создана временная модель Cut Stock

• Single Step >

Cut Stock aвтоматически перемещается в Stock компонент с тем же самым именем в следующую установку.

• Play to End

5. Выход из VERICUT

- File > Exit
- Ignore All Changes

Вывод

На этом уроке мы увидели, как импортировать установку.

Перемещение обработанной заготовки между установками

При выполнении множества операций обработанная заготовка автоматически перемещается в компонент Stock следующей установки с тем же самым именем. На этом уроке мы переместим обработанную заготовку в другое место оснастки и запишем перемещение.

1. Откроем файл проекта Airframe_mfg.vcproject

- Запустите VERICUT
- File > Open
- Shortcut = Training
- **File** = Airframe_mfg.VcProject
- Отобразите Project Tree PE

2. Обработаем NC Program до конца первой установки

• Play to End 🕨

Симуляция сконфигурирована на останов в конце первой установки.

3. Single Step для перехода во вторую установку

• Single Step >

Во второй установке заготовка должна быть перемещена на другую сторону.

4. Перемещение обработанной заготовки на вторую позицию

- B Project tree выберите Setup: 2, кликните правой кнопкой мыши, выберите Expand All children
- В Project tree выберите OCut Stock, кликните правой кнопкой мыши, выберите Modify...
- В панели Modeling перейдите на вкладку Position
- Вкладка Assemble
- Выберите стрелку, следующую за первым *Mate* ограничением
- Выберите плоскость станка на левом виде

• Выберите плоскость оснастки на правом виде

Обработанная заготовка будет перемещена на вторую позицию

5. Сохранение перемещения заготовки

- В панели Modeling перейдите на вкладку Model
- Preserve Stock Transition

Cancel

Перемещение будет сохранено в файле проекта. Обработанная заготовка будет перемещена на ее новую позицию автоматически. На этом этапе обработку нужно продолжить, но мы начнем сначала для тестирования созданного перемещения между установками.

6. Обработаем деталь сначала

- В Project tree выберите Setup: 2, кликните правой кнопкой мыши, выберите Motion
- Stop At = End
- OK
- Reset Model 📥
- Play to End

7. Выход из VERICUT

- File > Exit
- Ignore All Changes

Вывод

На этом уроке мы научились сохранять перемещение между установками.

Создание перемещения заготовки с системой координат вручную

1. Откроем файл проекта csys_transition.vcproject

- Запустите VERICUT
- File > Open
- Shortcut = Training
- **File** = csys_transition.VcProject
- Отобразите Project Tree PE
- 2. Обработаем NC Program до конца первой установки
 - Play to End
- 3. Создадим перемещение системы координат в первую установку
 - В Project Tree выберите Setup:1, кликните правой кнопкой мыши, выберите ¹ Coordinate Systems > Define
 - **Coordinate System Name =** transition_axis
 - Вкладка Construct
 - Для Origin (XYZ) выберите 3 Planes

Translate Rotate C	onstruct Matrix	
Origin (XYZ)	000	🛯 🔄 3 Planes 🛛 👻
Primary Axis (IJK)	100	Noint Point
Secondary Axis (IJK)	010	Vector/Plane
Avis Orde	r XX v	odate Circle

Выберите стрелку 🔍, следующую за **3 Planes**, и выделите 3 следующих плоскости

• Update

- **OK**
- 4. Сброс обработки
 - Reset Model 📤
- 5. Создадим перемещение системы координат во вторую установку
 - В Project Tree выберите Setup:2, кликните правой кнопкой мыши, выберите Coordinate Systems > Define
 - **Coordinate System Name** = transition_axis
 - Construct tab
 - Для Origin (XYZ) выберите 3 Planes
 - Выберите стрелку 🔍, следующую за **3 Planes**, и выделите 3 следующих поверхности

- Update
- Reverse X

• Установите Use for Cut Stock Transition

• OK

Модель **Cut Stock** будет присоединена к компоненту Stock во второй установке автоматически. Ориентация будет управляться двумя системами координат с одним и тем же именем, отмеченными как **Use for Stock Transition**.

6. Обработайте деталь сначала

- В Project tree выберите Setup : 2, кликните правой кнопкой мыши, выберите Motion
- Stop At = End
- OK
- Reset Model 📥
- Play to End

7. Выход из VERICUT

- File > Exit
- Ignore All Changes

Вывод

Обработанная деталь автоматически перемещается в следующую установку, но иногда ее необходимо переориентировать. На этом уроке мы увидели, что эту задачу можно легко выполнить при помощи систем координат.
Создание нового проекта

VERICUT 6.0 может симулировать в одной сессии множество установок, используемых для создания детали. Файл проекта может содержать одну или несколько установок. Множественные установки могут иметь несколько NC операций, выполняемых на одном станке с деталью, перемещаемой для каждой операции. NC операции могут быть на разных станках с разными оснастками, инструментами и настройками. Каждая установка ссылается на свой собственный станок, систему управления, инструменты, NC программы, оснастки, настройки симулирования и т.д. Установка может быть создана из эскиза, импортирована из другого файла проекта или из старой версии пользовательского файла.

На этом уроке вы научитесь:

- Создавать первую установку в пустом проекте
- Копировать первую установку во вторую, изменять ее и симулировать следующую операцию

1. Создадим новый файл проекта

- Запустите VERICUT
- File > New Project > Inch
- Установите Working Directory нажатием на иконку 🖄
- Отобразите **Project Tree** нажатием на иконку **P**E
- В Project Tree кликните правой кнопкой мыши на первом наборе (Setup 1) и выберите Expand All Children из выпадающего меню

- 2. Откроем файл станка DMG DMU50e с системой управления Heidenhain 530 TNC.
 - В Project tree кликните правой кнопкой мыши на CNC Machine и выберите в меню CNC Machine ...
 - В поле Machine выберите dmg_dmu50v.mch
 - В поле Control выберите hei530.ctl

😡 CNC Machine	
Machine	
C:\cgtech60\library\dmg_dmu50v.mch	~
Browse	
Control	
C:\cgtech60\library\hei530.ctl	~
Browse	
ОК	Cancel

- Нажмите **Reset** \triangleq
- Кликните правой кнопкой мыши в графической области VIEW 1 и выберите View Type > Machine/Cut Stock

3. Добавим оснастку и начальный блок заготовки

• Разверните и измените размер изображения, чтобы очистить стол станка

- Кликните правой клавишей мыши на **Fixture** и выберите **Component Attributes;** вкладка **Model**
- В панели Modeling выберите Type = Model File
- Browse...
- В окне **Open** выберите **Shortcut = Training**
- Выделите vise_body.stl
- Open
- Add
- Используйте Translate, Rotate и/или Assemble для размещения тисков по центру рабочей области.

Совет: Для удобства размещения добавьте Workpiece View. По окончании вы можете закрыть этот вид.

- В Project Tree дважды кликните на Stock
- В панели Modeling на вкладке Model выберите Type = Block и введите:

Width
$$(\mathbf{Y}) = \mathbf{5}$$

$$Height(Z) = 3$$

- Нажмите Add
- На вкладке Position используйте Translate, Rotate и/или Assemble, чтобы разместить заготовку в зажиме

- В Project Tree нажмите еще раз **⁹ Fixture**
- В панели Modeling на вкладке Model выберите Type = Model File, Browse
- Shortcut = Training
- Выберите vise_jaw.stl, Open, Add
- Используйте Translate, Rotate и/или Assemble, чтобы разместить зажимной кулачок так, чтобы он зажимал заготовку

• Нажмите OK в панели Modeling

Примечание: В VERICUT 6.0 компоненты Setup (компоненты, которые изменяются для каждого набора, такие как Stock и Fixtures) сохраняются в каждой установке проекта. Станок содержит только постоянные компоненты.

Компоненты установки связаны с групповым ²² Attach компонентом в Станке.

- 4. Выберем NC программу (NC program)
 - B Project Tree дважды кликните на NC Programs

- В панели NC Program выберите Add...
- Shortcut = Training
- Filter = *.mcd
- File = setup1.mcd, OK, OK
- 5. Добавим библиотеку инструментов (Tool Library)
 - В Project Tree кликните правой кнопкой мыши на Tooling, выберите
 - Shortcut = Training
 - File = setup1.tls
 - Open
- 6. Создадим систему координат для NC program zero
 - В Project Tree кликните правой кнопкой мыши на Setup:1, выберите Coordinate System > Define...
 - В панели Coordinate System выберите Сооrdinate System Name = program zero
 - Attach Coordinate System To = Stock
 - Кликните в окно **Position** (выделено желтой рамкой)
 - Кликните наверху в центре заготовки и нажмите Apply, чтобы разместить систему координат

- По желанию вы можете изменить цвет системы координат 🥸
- Нажмите **OK** в панели Coordinate System

7. Использование системы координат для NC program zero

- В Project tree кликните правой клавишей мыши на Setup:1, выберите [₿] G-Code > Settings...
- На вкладке **Tables** выберите **Add/Modify**
- В панели Add/Modify G-Code Table выберите Table Name = Program Zero
- Select From/To Locations
- From: Feature = Component : Name = Tool
- To: Feature = CSYS : Name = program zero

🛂 Add/Modify G-Cod	le Table			
Table Name	Program Zero	~		
SubSystem ID	1	~		
Register:	1			
SubRegister	1			
Select From/To Loc	ations			
Feature	Name	Offset		
From Compone	ent 🔽 Tool	🖌 000 📉		
To CSYS	To CSYS 🔽 program_zero 🛩			
	Calculate when U	sed		
O Enter Offset (or sele	ect 2 points)			
Values (XYZAE	BCUVWABC); 194	4 -6.1024 -18.3386 🔊		
Add	Modify	Close		

- Add > Close
- OK
- 8. Изменим отображение на OpenGL
 - Кликните правой кнопкой мыши в графической области View 1, выберите Accelerated (OpenGL)
- 9. Сохраним проект
 - Сохраните проект нажатием на иконку 🕎
 - File = my_project
 - Save
- 10. Запустим первую установку
 - Play to End

Совет: Чтобы улучшить качество изображения *Cut Stock*, перейдите в окно *View > Attributes* и перемещайте ползунок *Cut Stock Display* влево, затем нажмите *OK*.

11. Скопируем Setup 1 для создания второй установки

- В Project Tree кликните правой кнопкой мыши на Setup:1, выберите 🗎 Сору
- Еще раз кликните правой кнопкой мыши, выберите **Paste**
- Кликните правой кнопкой мыши на новом наборе, выберите Rename
- Переименуйте этот набор "2"

12. Разместим Cut Stock для Setup:2

- В Setup:1 разверните Stock Models, кликните правой кнопкой мыши на OCut Stock, выберите 💑 Cut
- В Setup:2 кликните правой кнопкой мыши на Stock, выберите Paste
- В панели Modeling на вкладке Position используйте Translate, Rotate и/или Assemble для размещения Stock в тисках.

Совет: Перейдите к виду *Workpiece View*, чтобы надлежащим образом увидеть тиски и заготовку, затем вернитесь к виду *Machine View*.

- Выделите Cut Stock, нажмите Preserve Stock Transition в панели Modeling на вкладке Model
- Выберите зажимной кулачок и разместите его напротив 🕸 Cut Stock
- Нажмите OK в панели Modeling

Примечание: Во время симулирования VERICUT автоматически перемещает **OCut Stock** из Stock компонента **Setup:1** в Stock компонент **Setup:2**. Ориентация **OCut Stock** в **Setup:2** может быть определена двумя системами координат с одним и тем же именем: одна в **Setup:1**, другая в **Setup:2**. Система координат во втором наборе будет отмечена как **Use for OCut Stock Transition**. Нажатие на **Preserve Stock Transition** автоматически создает две системы координат, которые перемещают и ориентируют **OCut Stock** во время симулирования.

- 13. Изменим библиотеку инструментов (Tool Library) для setup:2
 - В Project Tree кликните правой кнопкой мыши на Tooling, выберите
 - Shortcut = CGTECH TRAINING
 - **File** = setup2.tls
 - Open
- 14. Переместим систему координат 'program zero' для setup:2
 - В Project tree кликните правой кнопкой мыши на Setup:2, выберите Coordinate System > Define
 - В списке Coordinate System Name выберите program zero
 - Кликните в окно **Position** (выделено желтой рамкой)
 - Кликните наверху в центре **Cut Stock** и нажмите **Apply**, чтобы разместить систему координат
 - Нажмите ОК, чтобы закрыть панель Coordinate System

Примечание: Так как мы используем зависимое смещение в **Setup:1**, нам не нужно исправлять программный ноль – VERICUT автоматически изменит его на новое смещение координат.

- 15. Выберем NC программу для Setup: 2
 - В Project tree кликните правой кнопкой мыши на NC Programs, выберите Add/Modify NC Programs...
 - Выберите существующую NC Program
 - Replace
 - Shortcut = Training
 - Filter = *.mcd
 - File = setup2.mcd
 - OK
 - OK

16. Изменим контроль ускоренных перемещений

- В Project tree выделите Setup: 2, кликните правой кнопкой мыши и выберите **#Motion...**
- Fast Feed = 250
- OK
- 17. Изменим отображение на OpenGL
 - Кликните правой кнопкой мыши в графической области View 1, выберите Accelerated (OpenGL)
- 18. Сохраним проект
 - Сохраните проект нажатием на иконку 🗒
- 19. Запустим вторую установку
 - Нажмите Reset 📤, затем Play to End 🕨

Создание фрезерного инструмента

На этом уроке мы научимся создавать различные типа фрез и сверл, используя менеджер инструментов (Tool Manager).

1. Откроем файл проекта milling_tools.vcproject

- Запустите VERICUT
- File > Open
- Shortcut = Training
- **File** = milling_tools.VcProject
- Установите Working Directory нажатием на иконку 🖄
- Отобразите Project Tree PE
- 2. Откроем библиотеку инструментов milling_tools.tls
 - В Project tree выберите Setup: 1, кликните правой кнопкой мыши, выберите Expand All Children
 - В Project tree выберите Tooling, кликните правой кнопкой мыши, выберите 📛 Open
 - Shortcut = Training
 - **File** = milling_tools.tls
 - В Project tree выберите Tooling, кликните правой кнопкой мыши, выберите 现 Tool Manager...
- 3. Добавим диаметр 50mm, 3mm угловой радиус, используя Milling Tool Wizard
 - Add > Milling Tool Wizard...
 - ID = 1
 - Description = 50 DIA, 3CR, 20H BULL END MILL
 - Cutter > New Revolved Cutter...

- Выберите Bull Nose End Mill
- Diameter = 50
- Corner Radius (R) = 3
- Height (H) = 200
- Flute Length = 50
- Shank Diameter = 30
- Spindle Direction = CW
- Add

Holder > Search Holder... •

😡 Milling To	ol Wizard	
ID	1	
Description		
Append o	utter shape to descrip	lion
ID Holde		None None New
ID ixtensi	on L2	Search Holder
ID Cutter	_ u	Defined
L2	0	
L1	0	□ Stack
🕀 Gage F	Point	□ Calculate highest point on Z
😔 Driven	Point	
	New	Close

- В панели Search нажмите Search •
- Разверните сборку [†] ref_holder1 Выберите [†]Holder1 •
- •

ID	Desc	Units	Gage	Orien	Teeth	Com	File	Tool Display
■ ♥ ref_holder1	Taper	Millime	000	000			U:\Pr	
⊕ † ref_holder2	Taper	Millime	000	000			U:\Pr	
		minine	000	000			0.191	
< III >	<			1111			>	
		Add				Clo	se	

- Add B Milling Tool Wizard, L1 = 125
- **Gage Point = 0 0 175** •
- Close •

4. Создадим сверло 13тт

- В панели Tool Manager выполните Add > Tool > New > Mill •
- Выберите Drill Diameter (D) = 13 • •
- Drill Point Angle (A) = 118 •
- Height (H) = 100•
- Flute Length = 25 •
- Add •

• Component Type = Holder

Мы будем ссылаться на существующую державку. Инструменты и державка, которые ссылаются на существующие объекты, значительно ускоряют процесс построения инструментов. Изменение в геометрии державки распространится на все инструментальные сборки, использующие ее. Вы можете сделать ссылку на инструмент из активной или из любой другой библиотеки инструментов.

- Reference
- Pick...
- В панели Search нажмите Search
- В панели Search разверните сборку 🕈 Drill_extension1
- Выберите **[†]drill_extension**
- OK
- Add
- Вкладка Assembly
- **Position = 0 0 50**
- Modify
- Вкладка Tool Component
- Pick...
- В панели Search нажмите Search
- В панели Search разверните сборку 🕈 ref_holder1
- Выберите **[†]Holder1**
- OK, Ådd
- Вкладка Assembly
- Position = 0 0 100
- Modify
- Close

• В панели Tool Manager выберите значение для Gage Point

ID	Description	Units	Gage Point	Teeth	Comments
⊫- † NO6_CD	#6 Center DRL	Millimeter	000		
₽ ₱ 1	50 DIA, 3CR, 20H BULL END	Millimeter	0 0 175.0		
Cutter	BULL NOSE (50 3 200)				
Holder1	REFERENCE "ref_holder1"				
P- † 2		Millimeter 🤇	000		
Cutter1	DRILL (13 118 100)				
+ Holder1	REFERENCE "Drill_extension				
Holder2	REFERENCE "ref_holder1" "				
■ ♥ ref_holder1	Taper #50, 40D tools, short	Millimeter	000		
Holder1	PROFILE (SOR)				
■ Tet_holder2	Taper #50, 40D tools, long	Millimeter	000		
		Millimeter	000		

- Переместите курсор мыши на необходимую позицию
- Выберите среднюю кнопку мыши, чтобы записать только значение Z
- Значение Gage Point должно быть 0 0 150
- Кликните в поле **Description**
- **Description** = 13mm Drill, **Enter**

5. Coxpanum Tool Library

- В панели Tool Manager выполните File > Save as...
- Shortcut = Working Directory
- **File** = new_milling_tools.tls
- Save
- 6. Построим длинный 12 mm Flat EM
 - В панели Tool Manager выполните Add > Tool > New > Mill
 - Учебный курс Основы VERICUT V6

- Выберите Flat Bottom End Mill
- Diameter = 12
- Height (H) = 100
- Flute Length = 25
- Spindle Direction = CW
- Add
- Component Type = Holder

Теперь мы создадим державку, используя профиль вращения.

- Выберите **Revolve Profile**
- Введите точки, как было описано ранее, по сетке или добавляя точки и редактируя их значения

Revolve F	Profile -									
Entity	X	Z	Radius	Arc Direction						
Point	0	0			++				╺┥╌┼╴┼	
Point	25	0			+					🔍
Point	30	5			<u>†</u>					🔍
Point	30	35								
Point	35	35								
Point	35	40								· · · · · ·
Point	0	40								
						0	Arc	• F	1 Y	
					15	Are	c Directio	n She	ortest 🛉	1
Add		Delete	Delet	e All Import DXF	, х	-10 🗹	Grid Size	5		Millime
Fillet Size	0		Create Fil	let Remove Fillet						

- Add
- Вкладка Assembly
- Position = 0 0 75
- Modify
- Close
- В панели Tool Manager выберите значение для Gage Point
- Переместите курсор наверх державки
- Выберите среднюю кнопку мыши, чтобы записать только значение Z
- Значение Gage Point должно быть 0 0 115

7. Построим короткий 12mm Flat EM

- В панели **Tool Manager** выберите инструментальную сборку **†**3, кликните правой кнопкой мыши, выберите **Сору**
- Кликните правой кнопкой мыши, выберите Paste
- Разверните инструментальную сборку 🛱 4
- Дважды кликните на **U** Cutter1
- Height (H) = 75
- Modify
- Дважды кликните на [†]Holder1
- Вкладка Assembly
- **Position = 0 0 50**
- Modify
- Close
- В панели Tool Manager выберите значение для Gage Point
- Переместите курсор наверх державки
- Выберите среднюю кнопку мыши, чтобы записать только значение Z
- Значение Gage Point должно быть 0 0 90
- В панели Tool Manager выделите сборку 74, кликните правой кнопкой мыши, выберите ADD Cutter Compensation
- Измените значение Ø с 1 è 4

• Введите значение (Enter the value of 6 Next to the $\cancel{9}$ 4)

8. Построим короткий 20mm Flat EM

- В панели Tool Manager выберите сборку 🕈 4, кликните правой кнопкой мыши, выберите Сору
- Кликните правой кнопки мыши, выберите Paste
- Разверните сборку 🕇 5
- Дважды кликните на UCutter1
- Diameter (D) = 20
- Modify
- Close
- Измените значение Cutter Compensation Ø c 4 è 5
- Измените значение Cutter Compensation c 6 ≥ 10
- В панели Tool Manager выполните File > Save
- File > Close

?	
The tool library name has been mod	ified
from U:\ProdMarketing\60Training	j۱
25_create_milling_tools\	
milling_tools.tls to U:\ProdMarketin	ig\
60Training\25_create_milling_tool	s١
new_milling_tools.tls, would you lik	(e
this change transferred to VERICU	т
Yes	
Yes	

- Yes
- 9. Обработка детали вновь созданными инструментами
 - Play to End

- File > Exit
- Ignore All Changes

Создание токарного инструмента

На этом уроке мы научимся создавать разные типы токарных инструментов, используя Tool Manager. Мы построим: #1 80 DEG, .8mm Radius Insert, OD tool

#2 80 DEG, .8mm Radius Insert, ID tool #3 6mm Groove tool

1. Откроем файл проекта turning_tools.vcproject

- Запустите VERICUT
- File > Open
- Shortcut = Training
- **File** = turning_tools.VcProject
- Установите Working Directory нажатием на иконку 🖄
- Отобразите Project Tree PE
- 2. Добавим инструмент #1 80 degrees diamond insert tool
 - В Project tree кликните правой кнопкой мыши на 📅 Tooling: Turning_tools > 🐉 Tool Manager...
 - Add > Tool > New > Turn
 - Insert Type = C-80 degree diamond
 - L-Length = 13
 - Thickness = 5
 - R-Corner Radius = 8
 - A-Lead Angle = 5
 - Color = 6:Light Goldenrod
 - Add

Примечание: В Tool Manager могут быть использованы те же самые команды вида вращения, как в VERICUT.

- 3. Добавим держатель инструмента, определенный как sweep file
 - В панели Tool Component выберите Component Type = Holder
 - effective and the second secon
 - Model file 👫
 - Browse...
 - Shortcut = Training
 - **File** = turning_tool_holder1.swp
 - Open
 - Add

•

- Вкладка Assembly
- Rotate, Increment = 90, X-, Y-

		XI VI 7I
Increment	90	
		X- Y- Z-

- 4. Добавим Holder Block ссылкой на Block1 assembly
 - Вкладка Tool Component
 - Reference
 - Pick...
 - Выберите Files
 - Search
 - Выберите block1 или по описанию turning tool block,RH
 - OK
 - Add
 - Вкладка Assembly

Переместите блок от держателя, чтобы разместить объекты правильно.

- Position = 30 0 50
- Modify
- Mate, выберите стрелку 🕅
- Выделите верх держателя и нижнюю часть паза, как показано ниже

• Close

- Кликните в поле под Gage Point для инструмента 1
- Разверните сборку, выделите Gage Point как показано ниже

5. Coxpanum Tool Library

- File > Save As...
- Shortcut = Working Directory
- **File** = my_turning_tools.tls
- Save
- 6. Добавим инструмент #2 80 degrees diamond insert tool
 - Add > Tool > New > Turn
 - Insert Type = C-80 degree diamond
 - L-Length = 13
 - Thickness = 3
 - R-Corner Radius = 8
 - A-Lead Angle = 95
 - Color = 6:Light Goldenrod
 - Add

- 7. Создадим тело вращения для нижней части держателя
 - В панели Tool Component выберите Component Type = Holder
 - Sweep Profile
 - Добавьте точки, как показано ниже

Entity	Z	Х	Radius	Arc Direction				
Point	0	0						· ·
Point	0	10						[••
Point	10	10						6
Point	10	-10				••••		
Point	0	-10						
Point	0	0						
								
						OArc	Pt	1
					ХО	Arc Direction	Shortest ~	·
Add		Delete	Delete	All Import DXF	〕 Ĺ, Z -15	Grid Size	5	Millimete
Fillet Size	0		Create Fill	et Remove Fillet				

- Выделите точку **10, 10**
- Filet Size = 10
- Create Fillet

- Выделите точку **10**, **-10**
- Filet Size = 10
- Create Fillet

- Thickness = 15
- Color = 10:Dim Gray
- Add
- Вкладка Assembly
- Rotate, **Increment = 90, X+, Z+ Z+**
- **Position = -10 0 0**
- Modify

- 8. Добавим цилиндр к держателю выше тела вращения
 - В панели Tool Component выберите Component Type = Holder

- Cylinder Radius = 10
- Height = 200•
- Color = 10:Dim Gray •
- Add •

•

- Вкладка Assembly
- **Position = -10 0 15** •
- Modify •
- 9. Добавим Holder Block ссылкой на Block2 assembly
 - Вкладка Tool Component •

 - Reference •
 - Pick... •
 - Выберите Files •
 - Search •
 - Выберите Block2 или по описанию turning tool block, Boring Bar
 - OK •
 - Add •
 - Вкладка Assembly •
 - **Position = 0 0 100**
 - Modify •
 - Close •

- Кликните в поле под Gage Point для инструмента 2 •
- Разверните сборку, выделите Gage Point как показано ниже •

10. Coxpaним Tool Library

- File > Save
- 11. Добавим инструмент #3 6mm Grooving tool
 - В Project tree кликните правой кнопкой мыши и выберите 🕏 Tooling: Turning_tools > 🕏 Tool Manager...
 - Add > Tool > New > Turn
 - Groove Insert
 - Insert Type = Square, single end
 - W-Width = 6
 - L-Length = 8
 - Thickness = 5
 - R-Corner Radius = 1
 - C = 4
 - **D** = 4
 - Color = 6:Light Goldenrod
 - Add
 - Вкладка Assembly
 - **Position = 1 0 1**
 - Modify

- 12. Добавим державку инструмента, определенную как sweep file
 - Вкладка Tool Component, Component Type = Holder

 - Model file
 Browse...
 - Shortcut = CGTECH_TRAINING
 - **File** = turning_tool_holder3.swp
 - Open
 - Color = 10:Dim Gray
 - Add
 - Вкладка Assembly
 - Rotate, Increment = 90, X-, Y-

13. Добавим Holder Block ссылкой на Block1 assembly

- Вкладка Tool Component
- Reference
- Pick...
- Выберите Files
- Search
- Выберите block1 или по описанию turning tool block, RH
- OK
- Add
- Вкладка Assembly
- **Position = 50 0 0**
- Modify
- Close
- Кликните в поле под Gage Point для инструмента 3
- Разверните сборку и выделите Gage Point как показано ниже

14. Сохраним и закроем Tool Library

- File > Save
- File > Close > Yes (чтобы использовать эту библиотеку инструментов в текущей сессии)
- 15. Сброс обработки
 - Как только симуляция будет оставлена Reset Model 📤

- 16. Обработаем деталь
 - Play to End
- 17. Выход из VERICUT
 - File > Exit
 - Ignore All Changes

Вывод

На этом уроке мы научились создавать библиотеку токарных инструментов.

Задание параметров инструмента

Каждый инструмент имеет свои собственные ограничения. На этом уроке мы узнаем, как устанавливать параметры обработки для каждого инструмента.

1. Откроем файл проекта tool_cutting_parameters.vcproject

- Запустите VERICUT
- File > Open
- Shortcut = Training
- **File** = tool_cutting_parameters.VcProject
- Установите Working Directory нажатием на иконку 🖄
- Отобразите **Project Tree P**^L

2. Добавим параметры обработки для инструмента #8 в Tool Manager

- B Project tree выделите Setup : 1, кликните правой кнопкой мыши и выберите Expand All Children
- В Project tree дважды кликните на **Пооling : tool_cutting_parameter**
- Выберите инструмент 8 и выполните Add > OptiPath > New...
- Material = Aluminum
- Вкладка Settings
- Minimum Cut Feedrate = 10 (снимите Default)
- Maximum Cut Feedrate = 120
- Maximum Cut Depth = 1.5
- Maximum Volume Removal Rate = 110
- Maximum Chip Thickness = .01
- Maximum Surface Speed будет проигнорировано
- Add, Yes
- Close

3. Добавим параметры обработки для инструмента #9 в Tool Manager

- Выберите инструмент 9 и выполните Add > OptiPath > New...
- Material = Aluminum
- Вкладка **Settings**
- Minimum Cut Feedrate = 3 (снимите Default)
- Maximum Cut Feedrate = 30
- Maximum Cut Depth = 0.75
- Maximum Volume Removal Rate будет проигнорировано
- Maximum Chip Thickness = .005
- Maximum Surface Speed будет проигнорировано
- Add, Yes
- Close

4. Coxpahum Tool Manager как parameter.tls и перенесем в VERICUT

- File > Save As...
- Shortcut = Working Directory
- **File** = parameters.tls
- Save
- File > Close, Yes

5. Установим VERICUT на останов после каждого предупреждения

- В Project tree выберите Setup: 1, кликните правой кнопкой мыши, выберите Motion
- Stop At Max Warning , 1
- • Check for Cutting Limits

- OK
- 6. Установите соответствующие параметры для Material и Machine
 - OptiPath > OptiPath Control
 - Material = Aluminum
 - Machine = Fadal 4020
 - OK

7. Обработайте деталь до первого предупреждения

Play to End

Программа остановится, когда инструмент #8 достигнет скорости 121 Inch Per Minute (лимит 120 IPM)

8. Выход из VERICUT

- File > Exit
- Ignore All Changes

Вывод

На этом уроке мы научились устанавливать ограничения для каждого инструмента.

Создание отчета о контроле

При выполнении множества операций часто бывает необходимо измерить некоторые значения перед тем, как деталь перейдет на следующую операцию. Мы будем использовать VERICUT для создания отчета контроля.

Откроем файл проекта vericut.vcproject

- Запустите VERICUT
- File > Open
- Shortcut = Library
- **File** = vericut.VcProject
- Отобразите Project Tree PE

Установим VERICUT на останов в конце первой установки

- В Project Tree кликните правой кнопкой мыши на Setup 1 и выберите FMotion
- Stop At = End of each Setup
- OK

•

Установим отображение только одного вида

- View > Layout > Standard >
- В виде Workpiece кликните правой кнопкой мыши и выберите Select View > V-ISO

Обработаем NC Program

Play to End

Выберем объект для контроля

- Analysis > Inspection...
- В панели Inspection кликните правой кнопкой мыши 🚽 Ч Insert Wall Thickness Row
- Кликните по длинной вертикальной стенке

- В панели Inspection кликните правой кнопкой мыши 🚽 "Insert Wall Thickness Row
- Кликните по короткой вертикальной стенке

Учебный курс Основы VERICUT V6

	Inspection							
<u>F</u> il	e Analysis	s <u>E</u> dit Program						
ľ	🗳 🛃 🕷 🗄	}₩ 3₽ 30 3⊡ 3H	34 3⊕ 3∎	‡ 3∰ 3 式 3ABC 💧	l 😃 b+s 🖈 🖹	2 🖲 🔁 🍤		
	Symbol	Feature	Identifier	Instrument	Dimension	Tolerance	Geo.Tolerance	Measurement
	 t	Wall Thickness	A1	Snap Caliper	0.2500	±0.0080		
	*	Wall Thickness	A2	Snap Caliper	0.2500	±0.0080		
		vvali Thickness	AZ	Snap Caliper	0.2500	±0.0080		
Ac	live Coordi	inate System: Mach	ine Origin					

Автоматически будет создано измерение выделенных стенок.

- В панели Inspection кликните правой кнопкой мыши 🔄 🛨 Insert Floor Thickness Row
- Выберите дно

Для измерения толщины дна выберите другой инструмент:

• Кликните в Ultrasonic, чтобы активизировать выпадающее меню, выберите Height Gage

Geo. Folerance	I olerance	Dimension	Instrument	Identifier	Feature	Symbol
	±0.0080	0.2500	Snap Caliper	A1	Wall Thickness	*
	±0.0080	0.2500	Snap Caliper	A2	Wall Thickness	**
	±0.0080	0.4800	Height Gage	A3 (Floor Thickness	, ad ‡
	±0.0080 ±0.0080	0.2500	Snap Caliper Height Gage	A2 A3 (Wall Thickness Floor Thickness	<u>بتنہ</u> جلب

Создадим HTML отчет

- В панели Inspection выполните File > Create Report > HTML
- Shortcut = Working Directory
- File = session29.html
- Save

		Sat	Inspect turday, February	ction Repo 25, 20062:41:15	PM PST		
Symbol	Feature	Identifier	Instrument	Dimension	Tolerance	Geo.Tolerance	Measurement
***	Wall Thickness	A1	Snap Caliper	0.2500	±0.0080		
*	Wall Thickness	A2	Snap Caliper	0.2500	±0.0080		
" d‡	Floor Thickness	A3	Height Gage	0.4800	±0.0080		

Сохраним настройки отчета контроля и закроем nanenь Inspection

- В панели Inspection выполните File > Save as...
- Shortcut = Working Directory
- **File** = session29.VcInspect
- Save
- В панели Inspection выполните File > Exit

Выход из VERICUT

- File > Exit
- Ignore All Changes

Вывод

Отчет контроля может быть создан на любой стадии процесса обработки на станке.

Создание и настройка отчета VERICUT

Этот урок покажет, как использовать информацию, собранную в процессе симуляции и предоставленную в настраиваемых отчетах, которые могут быть использованы разными производственными подразделениями.

Откроем файл проекта vericut.vcproject

- Запустите VERICUT
- File > Open
- Shortcut = Library
- **File** = vericut.VcProject
- Отобразите Project Tree PE
- Установите Working Directory нажатием на иконку 🖄
- Сконфигурируем VERICUT так, чтобы при смене инструмента и в конце файла сохранялось изображение симуляции
 - File > Autosave; вкладка View Capture
 - Установите Cutter Change и File End
 - OK

Установим режим отображения одного вида на всех установках

- View > Layout > Standard > One view
- Fit 🖲
- Повторить для всех 3 установок

Обработаем модель

Play to End

Во время обработки обратите внимание на небольшие задержки во время смены каждого инструмента – в это время сохраняются изображения.

Сгенерируем отчет на основе предопределенного шаблона

- Project > Report > Report Template > Edit...
- File > Open
- Shortcut = CGTECH_LIBRARY
- File = vericut_full.VcTemplate
- Open
- File > Close
- Yes
- File > Create Report > HTML
- Save

VERICUT Report

Friday, February 24, 2006 10:58:01 AM PST

User File: U:\Applications\DailyBuilds\cgtech60\library\vericut.VcProject

		-				
Eil	e	SI	Jm	m	а	nv

	r no v annnar j					
File Type	File Name					
User File	U:\Applications\DailyBuilds\cgtech60\library\vericut.VcProject					
Machine File	U:\Applications\DailyBuilds\cgtech60\library\dmu50v.mch					
Control File	U:VApplications\DailyBuilds\cgtech60\library\hei530_dmu50v.ctl					
Tool Library File	U:\Applications\DailyBuilds\cgtech60\library\vericut_setup1.tls					
Design Model File	U:\Applications\DailyBuilds\cgtech60\library\wericut_design.stl					
NC Program	U:\Applications\DailyBuilds\cgtech60\ibrary\vericut_setup1.mcd					

Material: 7075-T6 Aluminum Machine: 4Axis Vertical

Page	1	of	18
------	---	----	----

	Shade Copy					
Thumbnail	Comments					
~	View Capture: Cutter change; Record number: 7					
All .	View Capture: Cutter change; Record number: 263					
A	View Capture: End of file; Record number: 352					

Page 2 of 18

Toolpath File:

U:\Applications\DailyBuilds\cgtech60\library\vericut_setup1.mcd

						Tool S	umma	ry						
Γ	Tool	Shade	800	Becord	Tool	Cutter	Cutter	Flute	Gage	OptiPath	Optimized	Original	Optimized	Γ
ľ	Thumbnail	Сору	Jey	Record	Description	Info	Height	Length	Offset	Record	Ву	Time	Time	E
Γ						GENERAL								Γ
						INSERT								
						S: 504								
						GENERAL								

Отчет показывает файлы, необходимые для запуска этой программы в VERICUT, изображения детали во время смены каждого инструмента, рисунок инструментов и время обработки. Этот шаблон поставляется с VERICUT. Каждый шаблон может быть дополнительно настроен.

Настроим шаблон для создания персонального отчета

- Project > Report > Report Template > Edit...
- File > Open
- Shortcut = CGTECH_LIBRARY
- File = vericut_basic.VcTemplate
- Open

Оставьте шаблон открытым

- В строке меню VERICUT выполните File > Report > Create Report > HTML
- Save

Сравним сгенерированный отчет с шаблоном.

- В окне HTML отчета выполните File > Close
- Измените First Page Header Text на Customized Report

e <u>E</u> dit				
age Layout Styles Use	r-Defined Tags Page	e Setup		
Category	Туре	Content	Alignment	Style
First Page Header	Text	Customized Report	Center	Title
First Page Header	Table	Custom Table	Center	Normal
Body	Table	Custom Table	Left	Normal
Body	Text	File Summary	Center	Heading
Body	Table	File Summary Table	Left	Normal
Body	Text	The second se	Left	Normal
Body	Table	User Table	Left	Normal
		PageBreak		
		Start Toolpath loop	and the second	
Body	Table	Custom Table	Left	Normal
Body	Text	Tool Summary	Center	Heading
Body	Table	Tool Summary Table	Left	Normal
Body	Text		Left	Normal
Body	Text	Tool Use Graph	Center	Heading
Body	Text	Time	Center	Normal
Body	Picture	Tool Use Graph	Center	Normal
Body	Table	Custom Table	Center	Normal
Page Footer	Text	[Full Page Number]	Center	Normal
		Page Break		
		End Toolpath Loop		

Ш

- Вкладка User-Defined Tags
- Add

- Tag Name = Programmer's name
- Type = Text
- Вкладка Page Layout
- Выделите First Page Header Custom Table
- Кликните правой кнопкой мыши, выберите Edit
- No. of Rows = 2 (нажмите Enter для активации)
- Выделите новую строку
- Кликните правой кнопкой мыши, выберите Insert Text > Programmer's name
- OK

User-Defined Tag позволяет ввести некоторую дополнительную информацию при генерации отчета.

Сохраним новый шаблон как customized_report.VcTemplate и сгенерируем отчет

- В окне Report Template выполните File > Save as
- Shortcut = Working Directory
- **File** = customized_report
- Save
- В строке меню VERICUT выполните File > Report > Create Report > HTML
- Save

Появится окно User-Defined Tags. Введенные значения будут сохранены в файле проекта, о чем при первом запуске отчета пользователь получит напоминание.

- Tag Value = "Mr. Programmer"
- OK

C:\Documents and Settings	sviau/My Doc	uments\work\vericut_demo.h	tm - Mie	rosoft l	nternet	Explore		. 🗆 🗙
File Edit View Favorites Tools	Help							2
🕝 Back 🔸 🜍 🔸 🖪 🛃 🌏	Search	📌 Favorites 🜒 Media 🥝	- 🎝		<u> </u>	3		
Address 🔄 C:\Documents and Sett	ngs\sviau\My Do	cuments\work\vericut_demo.htm					👻 🄁 Ge	Links ¹⁰
Google	💏 Search Web	🔹 🐗 🗗 107 blocked 📲 Autor	1 🗖 0	ptions 🤳				
								^
User File: Utwork/prodw	Wedi ≻rel-54\librar	CUSTOMIZED REP hesday, May 26, 2004 1 53:20 F Mr.Programmer //vericult.usr File Summary	оп м РОТ					
File Tyme			ila Non	10				_
I Isar File	L1/mork)	nrodwo-rel-54)library/vericut us	r					
Machine File	U:/work?	prod/wc-rel-54\library\nexus410	a mch					_
Control File	U:Work	prodwo-rel-54)library/vericut_d	emo.cti	2				_
Tool Library File	U:/work	prodwo-rel-54Vibrary/vericut de	emo.tis					
OptiPath Library File	U:/work?	prodwc-rel-54\library\vericut_d	amo.olb	1				
Toolpath File	U:'work'	prodwo-rel-54Vibrary/vericut d	emo.mo	d .				
	U:\work\	prodwc-rel-54\library\vericut_d	emo opi	2.mcd				
Toolpeth File: U:/worky	prodiwo-rel-54	Page 1 of 3 Vibrary/wericut_demo.mcd Tool Summary						
Tool Thumbhall Seq Record	Tool	Cutter Info	Cutter	Flute	Gage	Original	Distance	Distar
0 9 N140T1M5	1:1.5 X 125 Insert End Mill	Profile	1.925	0	0 0 8 6575	5 3456	880 759	59.40t
1 268:N4500M	3:1.5 X.125 End Mill	[7 Parem] 1.5, 0.0625.0.6875.0.0625.0.0.3.25	3.25	2.6	8 25	1.6712	325 281	63.437
2 358:N9520M 5 413:N30M6 9 483:N30M6	³ 4:Center Drill	Profile	1	1	3.5	3.1981	423.716	0.4956
3 377:N9670M 6 430:N170M6 10 500:N170M6	5:.500 Drill	[7 Param] 0.5, 0,0,0,31,0,3	3	2.5	6	2.0388	337.8353	1.0856
4 396:N9820M 8 468:N490M6	8:.750 Spot	[7 Param] 0.75, 0,0,0,45,0,3	3	2	6	1 9919	296.1942	0.705E 🛩
Done						S	ty Computer	1

• Закройте отчет

Изменим таблицу Tool Summary Table

- Выделите Body Tool Summary Table
- Кликните правой кнопкой мыши, выберите Edit
- Выделите **Tool Thumbnail**
- Add
- Выделите новую строку
- Column = View Capture
- **Header** = Operation
- Alignment = Center
- OK
- File > Save

Создадим отчет

- File > Report > Create Report > HTML
- Save

C:\Documents and Sett	ings\sviau\Wy De	ocuments\wo	ork\vericut_demo.htm - Micros	oft inte	rnet Exp	lorer		
Ele Edit View Favorites	Tools Help							2
🕲 Back 🔸 🜍 🔸 🛃 🖪	👔 🕜 🔎 Search	n 🐈 Favorites	s 🜒 Media 🥝 🍰 💌	• 🖵	12 -3			
Address 🗐 C: Documents and	Settings\sviau\My I	Documents\wor	k\vencut_demo.htm			1	- 50	Links ¹⁰
Google	Search Wa	b - 🤣 🗗	107 blocked 🐨 Autorit 🛛 🚾 Option	ъ 🧳		1		
2								*
User File: Unwork\pr	We odwc-rel-54Nibra	Custo dhesday, Ma Mr.Pr ary/vericut.usi	P mized Report y 28, 2004 2, 11: 19 PM PDT rogrammer r					
			ne vaninary					_
File Type		1. N. 1	File Name					2
User File	U:wor	k/prodwo-rei-	54 Vibrary wericut. usr					
	U:WOF	kyprodwc-rei-	-04 vibrary vnexus4 10a.mch					
	U.wor	k/prod/vo-rei-	54 uprary wencut_demo.cu					_
Tool Library File	U:wor	kyprodwc-rei-	-04vibrarywencut_demo.os					_
Operatin Library Hie	ju.wor	kyprodwc-rei-	-54 library wencut_demo.old					
I oolpath File	U:wor	k\prodwc-rel-	-54 Vibrary wencut_demo.mcd					
່Toolpeth File: ປ:ຳທ	ork\prod\vo-rel-6	4\library\veri T∢	Page 1 of 3 cut_demo.mcd col Summary					
Tool		Tool		Cutter	Flute	Gage	Original	
Thumbnall Operation S	eq Record	Description	Cutter Info	Height	Length	Offset	Time	Dista
•	9:N140T1M6	1:1.5 X .125 Insert End Mill	Profile	1.925	٥	0 0 8.6575	5.3458	880.75
1	286 N4500M6	3:1.5 X.125 End Mill	[7 Param] 1.5, 0.0625,0.6875,0 0625,0,0,3.25	3.25	2.8	8.25	1.8712	325.28
	358:N9520M6 413:N30M6 483:N30M6	4:Center Drill	Profile	1	1	3.5	3.1981	423.7
	377 N9670M6 430 N170M6 500 N170M6	5:.500 Drill	[7 Param] 0.5, 0.0,0,31,0,3	3	2.5	6	2.0388	337.83
4 3	396 N9820M6 468 N490M6	6: 750 Spot	[7 Param] 0.75, 0,0,0,45,0,3	3	2	6	1.9919	296.19 💌
Done						SMY!	Computer	

Обратите внимание, что в Tool Summary Table добавлены эскизы, показывающие деталь в конце каждой операции.

• Закройте отчет и шаблон

Выход из VERICUT

- File > Exit
- Ignore All Changes

Создание кинематической схемы 3-х координатного станка

Этот урок покажет, как сконфигурировать файл станка VERICUT, который описывает кинематику 3-х координатного вертикального станка, а затем сконфигурировать VERICUT для симуляции движения инструмента по G-code, предназначенного для NC станка. Этот 3-х координатный станок управляется системой управления Yasnac. Машинный ноль расположен на расстоянии 15.2" от уровня стола.

- 1. Запустим новый файл Inch проекта
 - Запустите VERICUT
 - File > New Project > Inch
 - Установите Working Directory нажатием на иконку 🖄

2. Omoбразим Component axis systems

• Кликните правой кнопкой мыши в окне VERICUT > Display Axes > Component, Model

(Оси будут невидимы до шага 4)

3. Загрузим систему управления Yasnac МХ-3

- Configuration > Control > Open...
- Shortcut=Library
- File Name=yasmx3.ctl, Open

Следующие шаги определят компоненты с "Base" на "Tool" Компоненты, которые будут определены на стороне инструмента станка: Base > Z > Spindle > Tool

4. **Отобразим Component Tree**

- Configuration > Component Tree (или нажатием на СЕ)
- 5. Добавим "Z" в "Base"
 - Выберите **Base** в Component Tree
 - Наведите курсор на **Вазе** (0, 0, 0), кликните правой кнопкой мыши
 - Выполните Append > Z Linear

Com	ponent Tree 🔀
File Edit	Component
= 😻 Bası = 🛶 A = 🖣	e (0, 0, 0) ttach (0, 0, 0) Fixture (0, 0, 0) Stock (0, 0, 0) ≫ Design (0, 0, 0)

🚺 Cor	nponent Tree	
File I	Edit Component	
0- 86	Component Attributes	
L L	🐰 Cut	
	🗈 Сору	
	🖺 Paste	
	× Delete	X Linear
	Rename	Y Linear
	Insert	Z Linear
	Append	A Rotary
	Visibility	B Rotary
l		C Rotary
		U Linear

Так как ноль станка расположен на расстоянии 15.2" от уровня стола, в компоненты оси Z необходимо добавить 15.2" смещение.

- В Component Tree выберите двойным кликом $\mathbb{Z}(0, 0, 0)$
- В окне Modeling вкладка Position
- **Position** = 0 0 15.2
- OK

Добавим "Spindle" в "Z" 6.

- Выберите **2** (0, 0, 15.2) в Component Tree •
- Наведите курсор на Z (0, 0, 15.2), кликните правой кнопкой мыши
- Выполните **Append** > **Spindle**

Добавим "Tool" в "Spindle" 7.

- Выберите Spindle (0, 0, 0) в Component Tree •
- Наведите курсор на Spindle (0, 0, 0), кликните правой кнопкой мыши
- Выполните Append > Tool

Основы VERIĆUT V6

Следующие шаги определят компоненты с "Base" в "Stock"

Компоненты, которые будут определены на стороне заготовки станка: Учебный курс

Base > Y > X > Attach > Fixture > Stock > Design

8. Добавим "Y" в "Base"

- Выберите **Base** (0, 0, 0) в Component Tree
- Наведите курсор на **Вазе** (0, 0, 0), кликните правой кнопкой мыши
- Выполните Append > Y Linear

9. Добавим "Х" в "Ү"

- Выберите **У** (0, 0, 0) в Component Tree
- Наведите курсор на У (0, 0, 0), кликните правой кнопкой мыши
- Выполните Append > X Linear

10. Вырежем и вставим "Attach" в "Х"

- Выберите ⁻⁻⁻⁻Attach (0, 0, 0) в Component Tree
- Кликните правой кнопкой мыши, выберите 🗸 Cut
- Выберите 🥙 X (0, 0, 0) в Component Tree, кликните правой кнопкой мыши и выберите 🖺 Paste

Примечание. То же самое можно сделать перетаскиванием компонента ⁴⁴Attach (0, 0, 0) на компонент **2**X (0, 0, 0)

🔽 Component Tree 🛛 🔀
File Edit Component
 Base (0, 0, 0) Z (0, 0, 15.2) Spindle (0, 0, 0) Tool (0, 0, 0) Y (0, 0, 0) Y (0, 0, 0) X (0, 0, 0) Attach (0, 0, 0) Fixture (0, 0, 0) Fixture (0, 0, 0) Stock (0, 0, 0) Design (0, 0, 0)

- 11. Сохраним "Захтіll.mch" файл станка
 - В Component Tree выберите File > Save As Machine ...
 - Shortcut=Working Directory
 - File Name=3axmill.mch, Save
 - Reset 📤

12. Добавим модель заготовки

- Кликните правой кнопкой мыши в окне VERICUT и выберите Project Tree ...
- В Project Tree кликните правой кнопкой мыши на Setup 1 и выберите Expand all Children
- Дважды кликните на 🗇 Stock
- Modeling: Model tab
- **Type** = Block
- Length (X) = 4.4
- Width (Y) = 3.4
- Height (Z) = 1.2
- Add
- OK, Fit 🔀

13. Загрузим Tool Library

- В Project Tree кликните правой кнопкой мыши на 划 Tooling
- Выберите 🗳 Ореп ...
- Shortcut= Training
- File Name=3axmill.tls, Open

14. Загрузим NC программу

- В Project Tree кликните правой кнопкой мыши на NC Programs
- Выберите EAdd/Modify NC Programs...
- В окне NC Program выберите Add...
- Shortcut = Training
- **File** = 3axis_program.mcd, **OK**
- OK
- 15. Установим программный ноль
 - В Project Tree кликните правой кнопкой мыши на Setup: 1
 - Выберите ₿[∠] G-code Setting > Settings...
 - Вкладка **Tables**
 - Выделите Job Tables и выберите Add/Modify
 - **Table Name** = Program Zero
 - SubSystem ID = 1
 - Register = 1
 - Установите Select From/To Location
 - From > Component = Tool
 - To > Component = Stock
 - Add
 - Close, OK
- 16. Запустим симуляцию
 - Нажмите Reset
 - Play to End 🕨

- 17. Сохраним файл проекта
 - File > Save As
 - Shortcut=Working Directory
 - File Name=3axmill.vcproject, Save
Создание кинематической схемы 4-х координатного станка

Этот урок покажет, как сконфигурировать файл станка VERICUT, который описывает кинематическую схему 4-х координатного горизонтального станка с "В" вращающимся столом. Система управления Cincinnati Acramatic 950 интерпретирует команды G-Code. Ноль станка расположен в 20" по оси Y и Z от центра "В" вращающегося стола (см. рисунок ниже). При построении станка с вращающимся столом лучше всего выбрать центр стола как начало построения и центр координат станка.

1. Начало нового Inch проекта

- Запустите VERICUT
- File > New Project > Inch
- Установите Working Directory нажатием на иконку 🎽
- 2. **Отобразим Component axis systems**
 - Кликните правой кнопкой мыши в окне VERICUT windows > Display Axes > Component, Model
- 3. Загрузим систему управления Acramatic 950
 - Configuration > Control > Open
 - Shortcut=Library
 - File Name=acr950mc.ctl, Open

Следующие шаги определят компоненты с "Base" в "Tool".

Компоненты, которые будут определены на стороне инструмента станка:

Base > Z > Spindle > Tool

- 4. Отобразим Component Tree
 - Configuration > Component Tree (или нажатием на СЕ)

5. Добавим "Z" в "Base"

- Выберите **Base** в Component Tree
- Наведите курсор на **Вазе**, нажмите правую кнопку мыши
- Выполните Append > Z Linear

Так как ноль осей У и Z размещен в 20" от центра В вращения, к обоим осям должно быть добавлено 20" смещение.

- В Component Tree выберите двойным кликом **2** (0,0,0)
- В окне Modeling перейдите на вкладку Position
- **Position** = $0\ 0\ 20$
- Apply

6. Добавим "Y" в "Z"

- Выберите **2** (0, 0, 20) в **Component Tree**
- Наведите курсор на **2** (0, 0, 20), кликните правой кнопкой мыши
- Выполните Append > Y Linear
- В окне Modeling перейдите на вкладку Position
- **Position** = $0\ 20\ 0$
- OK
- 7. Добавим "Spindle"в "Y"
 - Выберите 🦑 Y (0, 20, 0) в Component Tree
 - Наведите курсор на **Y**, кликните правой кнопкой мыши
 - Выполните **Append** > **Spindle**
- 8. Добавим "Tool" в "Spindle"
 - Выберите Spindle (0, 0, 0) в Component Tree
 - Наведите курсор на **Spindle** (0, 0, 0), кликните правой кнопкой мыши
- 108

Учебный курс Основы VERICUT V6

• Выполните Append > Tool

Следующие шаги определят компоненты с "Base" в "Stock".

Компоненты, которые будут определены на стороне заготовки станка:

Base > X > B > Stock

- 9. Добавим "Х" в "Base"
 - Выберите **Base** (0, 0, 0) в Component Tree
 - Наведите курсор на **Вазе** (0, 0, 0), кликните правой кнопкой мыши
 - Выполните Append > X Linear
- 10. Добавим "В" в "Х"
 - Выберите 🦑 X (0, 0, 0) в Component Tree
 - Наведите курсор на 🥙 Х (0, 0, 0), кликните правой кнопкой мыши
 - Выполните **Append** > **B** Rotary
- 11. Вырежем и вставим "Attach" в "В"
 - Выберите ⁼⁼⁼Attach (0, 0, 0) в Component Tree
 - Кликните правой кнопкой мыши, выберите 端 Cut
 - Выберите 🥮 B (0, 0, 0) в Component Tree, нажмите правую кнопку мыши, выберите 💾 Paste

Примечание. То же самое можно сделать, перетацив компонент ⁴⁴Attach (0, 0, 0) в компонент ⁴²B (0, 0, 0).

- 12. Сохраним "4axmill.mch" файл станка
 - В Component Tree выполните File > Save As Machine ...
 - Shortcut=Working Directory
 - File Name=4axmill.mch, Save
 - Нажмите **Reset** 📤

13. Добавим заготовку

- Кликните правой кнопкой мыши в окне VERICUT и выберите Project Tree ...
- В Project Tree кликните правой кнопкой мыши на Setup 1 и выберите Expand all Children
- Дважды кликните на 🗗 Stock
- Modeling: Model tab
- **Type** = Block
- Length (X) = 7
- Width (Y) = 5
- Height (Z) = 5
- Add
- OK, Fit 💢

14. Загрузим Tool Library

- В Project Tree кликните правой кнопкой мыши на 划 Tooling
- Выберите ڬ Ореп ...
- Shortcut=Training
- File Name=4axmill.tls, Open
- 15. Загрузим NC программу
 - В Project Tree кликните правой кнопкой мыши на NC Programs
 - Выберите 🗒 🗄 Add/Modify NC Programs...
 - В окне NC Program выберите Add
 - Shortcut = Training
 - **File** = 4axmill.mcd
 - OK
- 16. Установим программный ноль
 - В Project Tree кликните правой кнопкой мыши на Setup 1
 - Выберите 💕 G-code Setting
 - Tables tab
 - Add/Modify
 - **Table Name** = Program Zero
 - SubSystem ID = 1
 - Register = 1
 - Установите Select From/To Location
 - From > Component = Tool
 - To > Component = B
 - Add
 - Close, OK
- 17. Запустим симуляцию
 - Reset Model 📤
 - Play to End

Построение кинематики 5-и координатного станка

Этот урок описывает, как определить 5-ти координатный станок Cincinnati T30, используя для формы компонентов STL модели, построенные в CAD системе. Цель урока – в определении компонентов и моделей для построения станка.

На рисунке ниже показан NC станок, который будет определен. На иллюстрации определена система координат станка (оси XwYwZw), оси движения и самые главные компоненты. Система управления Fanuc 12M CNC обрабатывает NC траектории движения инструментов.

1. Создадим новый файл проекта

- Запустите VERICUT
- File > New Project > Inch
- Установите Working Directory нажатием на иконку

2. Отобразим систему координат компоненты и модели Machine/Cut Stock виде

- Кликните правой кнопкой мыши в окне VERICUT > Display Axes > Component, Model
- Кликните правой кнопкой мыши в окне VERICUT > View Type= Machine/Cut Stock

3. Загрузим систему управления Fanuc 12М

- Configuration > Control > Open
- Shortcut=Library
- File Name=fan12m.ctl, Open

Следующие шаги определяют компоненты с "Base" в "Tool".

Компоненты на стороне инструмента станка:

Base > X > Y > A > Spindle > Tool

Этот урок покажет, как устанавливать цвета, которые будут унаследованы моделями, добавленными позже.

4. Отобразим Component Tree

• Configuration > Component Tree

- 5. Установим цвет для компонента ''Base''
 - Выберите **Вазе** (0,0,0) в Component Tree, нажмите правую кнопку мыши и выберите **Component** Attributes
 - Color=choose a color
 - **Apply** (оставьте окно Modeling открытым для установки цветов компонентов, которые будут добавлены позже)
- 6. Добавим "Х" в "Base"
 - Выберите **Base** (0,0,0) в Component Tree, нажмите правую кнопку мыши и выберите Append > X Linear
 - В окне Modeling выберите Color=choose a color
 - Apply
- 7. Добавим "Ү" в "Х"
 - Выберите 🥙 X (0,0,0) в Component Tree, нажмите правую кнопку мыши и выберите Append > Y Linear
 - В окне Modeling выберите Color=choose a color
 - Apply
- 8. Добавим "А" в "Ү"
 - Выберите **W**Y (0,0,0) в Component Tree, нажмите правую кнопку мыши и выберите Append > A Rotary
 - В окне Modeling выберите Color=choose a color
 - Apply
- 9. Добавим "Spindle" в "А"
 - Выберите 🎱 A (0,0,0) в Component Tree, нажмите правую кнопку мыши и выберите Append > Spindle
 - В окне Modeling перейдите на вкладку Position
 - **Position=**0 0 -12.5
 - Apply
 - Component Attributes tab
 - Color=choose a color
 - Apply
- 10. Добавим "Tool" в "Spindle"
 - Выберите Spindle (0,0,-12.5) в Component Tree, нажмите правую кнопку мыши и выполните Append > Tool
 - B окне Modeling установите Color=White
 - Apply

Компонент Tool определяет, откуда будут загружены токарные инструменты. Компонент Tool должен быть определен перед обработкой файла траектории движения инструмента или попыткой переместить станок через **MDI**. Ноль инструмента обычно размещается на пересечении оси инструмента с плоскостью шпинделя.

Следующие шаги определяют компоненты с "Base" в "Stock" Компоненты на стороне заготовки станка: Base > Z > B >Attach > Fixture > Stock > Design

11. Добавим "Z" в "Base"

- Выделите **Base** в Component Tree, нажмите правую кнопку мыши и выполните Append > Z Linear
- B окне Modeling установите Color=choose a color
- Apply

12. Добавим "В" в "Z"

- Выделите *Z* (0,0,0) в Component Tree, нажмите правую кнопку мыши и выполните Append > B Rotary
- B окне Modeling установите Color= choose a color
- OK
- 13. Вырежем и вставим "Attach" в "В"
 - Выделите ⁼⁼Attach (0,0,0) в Component Tree, нажмите правую кнопку мыши и выберите 🕌 Cut
 - Выделите 🥮 B (0,0,0) в Component Tree, нажмите правую кнопку мыши и выберите 🍱 Paste

🖬 Component Tree 💦 🚺	<
File Edit Component	
 ⇒ Base (0, 0, 0) ⇒ X (0, 0, 0) ⇒ X (0, 0, 0) ⇒ X (0, 0, 0) ⇒ S pindle (0, 0, -12.5) † Tool (0, 0, 0) ⇒ Z (0, 0, 0) ⇒ B (0, 0, 0) ⇒ Attach (0, 0, 0) ⇒ Attach (0, 0, 0) ⇒ Stock (0, 0, 0) ⇒ Design (0, 0, 0) 	

Обратите внимание, что компоненты **Fixture**, **Stock** и **Busign** перемещаются с компонентом **Attach**.

Ноль компоненты Fixture это место, откуда будут загружаться модели оснастки. Наличие оснастки в станке не оказывает влияния на то, как будет обработан файл траектории движения инструмента, однако, это полезно для обнаружения столкновений между оснасткой и другими компонентами станка.

Ноль компоненты Stock это место, в которое будет помещена заготовка. Этот тип компонента должен быть определен в каждом станке. Компонент Stock обычно привязан к компоненту Fixture, но в общем случае компонент Stock может быть привязан к любому другому компоненту. Единственное условие – компонент должен быть определен перед обработкой файла траектории движения инструмента или попыткой переместить станок через **MDI**.

14. Сохраним "5ахсіп.mch" файл станка

- В Component Tree выполните File > Save As Machine
- Shortcut=Working Directory
- File Name=5axcin.mch, Save

Примечание: В файле проекта будут сохранены только компоненты, связанные с элементом ****Attach**. Файл станка (Machine) не будет видеть компоненты **¥Fixture**, **Stock** и ***Design**, сохраненные в нем, до тех пор, пока они не будут связаны с компонентом ****Attach**.

15. Добавим "Ваѕе" модель

- В Component Tree выберите **Ваse** (0,0,0)
- Нажмите правую кнопку мыши и выберите -Component Attributes
- Вкладка Model
- Type=Model File
- Browse
- Shortcut= Training
- File Name=cint30ba.stl, Open
- Color=Inherit (цвета могут быть выбраны для индивидуальных моделей, чтобы выделить детали на станке)
- Add

Совет: Используйте Fit 💢, чтобы увидеть станок полностью, и CTL+SHIFT+Left Mouse, чтобы развернуть модель.

Обратите внимание, что файл STL модели "cint30ba.stl" содержит две формы, описанные в одном файле STL модели.

16. Добавим "Х" модель

- В **Component Tree** выделите **X** (0,0,0)
- Model Definition: Model tab
- Type=Model File
- Browse
- Shortcut= Training
- File Name=cint30x.stl, Open
- Add

17. Добавим "Ү" модель

- В Component Tree выделите ²У (0,0,0)
- Model > Model Definition: Model tab
- Type=Model File
- Browse
- Shortcut= Training
- File Name=cint30y.stl, Open
- Add

18. Добавим "А" модель

- В Component Tree выделите ²А (0,0,0)
- Model Definition: Model tab
- Type=Model File
- Browse
- Shortcut=Training
- File Name=cint30a.stl, Open
- Add

19. Добавим "Spindle" модель

- В Component Tree выделите Spindle (0,0,-12.5)
- Model > Model Definition: Model tab
- Type=Model File
- Browse
- Shortcut= Training
- File Name=cint30sp.stl, OK
- Add
- Position tab
- **Position=**0 0 12.5
- Apply

Добавление моделей в компоненты "Stock side"

- 20. Добавим "Z" модель
 - В **Component Tree** выделите **²** Z (0,0,0)
 - Model Definition: Model tab
 - Type=Model File
 - Browse
 - Shortcut= Training
 - File Name=cint30z.stl, Open
 - Add

При размещении станка в ноле компоненты "Y" и "Z" попадают в состояние столкновения. Так как станки VERICUT сконструированы так, что все компоненты размещаются в соответствующих им нулях, столкновения во время определения станка будут общими. Следующим шагом (после добавления "B" модели) станет определение <u>Initial</u> <u>Machine Location table</u> для перемещения станка из состояния столкновения в начальную позицию.

21. Добавим "В" модель

- В Component Tree выделите ²В (0,0,0)
- Model Definition: Model tab
- Type=Model File
- Browse
- Shortcut= Training
- File Name=cint30b.stl, Open
- Add
- Cancel

22. Установим таблицу начальных положений органов станка "Initial Machine Location"

Таблицы размещения станка описывают, как будет позиционирован станок первоначально, как станок двигается при смене инструментов и шпинделей, а также размещение референтной точки станка.

- Configuration > Machine Settings: Tables tab
- Add/Modify
- Table Name=Initial Machine Location
- Values=0 60 62
- Add
- Close
- OK

23. Сброс станка для определения нового начального расположения

• Reset Model 📤

Окончательная конфигурация станка показана ниже: станок установлен в начальное состояние X0 Y60 Z62 A0 B0.

- 24. Используем "MDI" для тестирования хода станка
 - Project > MDI
 - Selection=A-45, Apply
 - Selection=B-90, Apply и т.д.
 - Reset Model 📥

25. Сохраним "5axcin.mch" файл станка

- В окне Component Tree выполните File > Save As Machine
- Shortcut=Working Directory
- File Name=5axcin.mch, Save

Завершение настройки проекта добавлением моделей заготовки и оснастки

26. Добавим модель оснастки

- Отобразите Project Tree нажатием на иконку 🕅
- B Project Tree кликните правой кнопкой мыши на Setup 1 и выберите Expand All Children
- В Project Tree дважды кликните на **WFixture**
- Modeling: Model tab
- Type=Model File
- Browse
- Shortcut=Training
- File Name=cint30fx.stl, Open
- Add

27. Добавим модель заготовки

- В Project Tree выберите Stock (0,0,0)
- Modeling: Model tab
- Type=Model File
- Browse
- Shortcut=Training
- File Name=cint30sk.stl, OK
- Add
- OK

28. Загрузим библиотеку инструментов

- В **Project Tree** кликните правой кнопкой мыши на **¹ Tooling** и выберите ¹ **Open** ...
- Shortcut = Training
- File = cint30_tools.tls

Open

29. Загрузим NC программу

В Project Tree кликните правой кнопкой мыши на NC Programs Выберите Add/Modify NC Programs... В окне NC Program выберите Add Shortcut = Training File = cint30.mcd OK

30. Запустим симуляцию

- Reset Model 📤 Play to End 🕨 •
- •

Конфигурирование системы ЧПУ

Этот урок показывает, как настроить NC систему управления для симуляции обработки различных G-Code слов и форматов данных. Пример "control.mcd" содержит много условий, к которым обычно обращаются через настройку системы управления, например:

Различия форматов слов

Специальных символов, которые выполняют NC функции управления

Различия в действиях, выполняемых определенными G-Code словами/значениями

Адресация неподдерживаемых G-Code слов/значений

Шаг в конце урока показывает, как сохранить конфигурацию системы управления в Control файле. Кроме того, будет сохранен User файл, содержащий ссылку на Control файл, позволяя легко настроить VERICUT для интерпретации G-кодов в этом и подобных ему файлах траектории движения инструмента, предназначенных для обрабатывающих центров. По умолчанию задана конфигурация системы управления для 3-х координатного станка, которая также содержит разнообразные, возможно и ненужные, данные. Поэтому чтобы начать конфигурирование системы управления с использованием VERICUT, мы рекомендуем загрузить сгенерированный User файл, чтобы конфигурацию начать с известного состояния, без посторонних данных.

- 1. Откроем файл проекта configure_control.vcproject
 - Запустите VERICUT
 - File > Open
 - Shortcut = Training
 - **File** = configure_control.vcproject
 - Open
 - Установите Working Directory нажатием на иконку 🖄

2. Просмотрим файл траектории движения инструмента

• Info > NC Program (или нажмите на Ш)

Во время просмотра траектории движения инструмента обратите внимание на комментарии, указывающие на необходимость настройки конфигурации системы управления.

🖬 NC Progra 🕅 - configure_control.mcd 🛛 💦 🚺	<
configure_control.mcd	1
* (VERICUT SAMPLE 3-AXIS MILL G-CODE FILE, INCH: control.mcd) (Tool tip programming example)	^
(Word considerations:)	≡
(Trailing zeros XYZ values, 2.3 format)	
(%- beginning & end of data)	
(Left/right parens and \$\$- comments)	
(Word/Address considerations:)	
(G11- linear motion)	
(G20 or G70- inch mode)	
(G21 or G71- metric mode)	
(M13- spindle CW/coolant on)	
(M5- spindle off/coolant off)	
(M10,M11- no need to simulate)	
N0010G70G90	
\$\$DRILLING TOOL PATH	
\$\$1/2" DRILL	
N0020T1M6	
N0030G0X5000Y4000Z2000S1400M3M10	V
NOCACENY3000V1000D 17_300M8	
Line 1	

- 3. Сконфигурируем G-code слова "X", "Y" и "Z" для использования 2.3 формата, например 12345= 12.345
 - Configuration > Word Format
 - Переместите правый бегунок вниз, пока не отобразятся "Х", "У" и "Z"
 - Выделите "Х" для изменения
 - Inch Method=Trailing or Decimal
 - Inch Format=2.3
 - Повторите для Y и Z

Информация о Х, Ү и Z изменится, как показано ниже.

Wo	rd For	rmat			ß					X
Name	Туре	Sub Type	Inch Me	Inch For	Metric Me	Metric For	. Multi	Multip	Composite F	
TAN	Function	tan_d								^
THEN	Special	Ignore								
U	Macro	Numeric	Decimal		Decimal		No			
UNBL	Macro	Alpha-Numeric								
V	Macro	Numeric	Decimal		Decimal		No			
W	Macro	Numeric	Decimal		Decimal		No			
WHILE	Macro	Numeric	Decimal		Decimal		No			
Х	Macro	Numeric	Trailing	2.3	Decimal	4.3	Yes	1		
Y	Macro	Numeric	Trailing	2.3	Decimal	4.3	No			
Z	Macro	Numeric	Trailing	2.3	Decimal	4.3	No			~
			Add			Delete	•			
		OK		A	pply		Car	ncel		

- 4. Сконфигурируем "%" для обозначения начала G-Code данных
 - В окне **Words** выделите "%"
 - **Type** = Special
 - **Sub-type**=Begin Data

5. сконфигурируем "\$\$" для обозначения комментариев, затем закроем окно Words

- Выделите "**\$\$**"
- Type = Special
- Sub-type=Begin Comment
- OK

По умолчанию "G1" (слово "G" со значением "1") устанавливает состояние линейного движения вызовом макроса **MotionLinear**. Однако NC программа "configure_control.mcd" для этого действия использует "G11". Функция **Word/Address** содержит соответствие вызываемых макросов и исполняемых G-Code слов/значений.

6. Найдем G-Code слово/значение, соответствующие состоянию "linear motion"

На этом шаге макрос, который вызывает линейное движение, называется "MotionLinear". Используем утилиту Word/Address: Find Utility, чтобы определить G-Code слово/значение, соответствующие вызову макроса "MotionLinear", затем изменим Word/Address на "G 11" для выполнения этого действия.

- Configure > Word/Address
- В окне Word/Address выполните Utilities > Find
- Чтобы обнаружить группу, которая вызывает макрос MotionLinear, выберите вкладку Macroname
- Кликните на поле под списком **Macroname**, напишите "linear" к списку макросов будет применен фильтр: будут показаны только те, которые содержат введенные символы.
- Найдите MotionLinear в списке Macroname, затем выделите этот макрос и нажмите First

7. Изменим группу, определенную на предыдущем шаге, которые тоже будут вызывать макрос при встрече с ''G11''

- Выделите MotionLinear кликните правой кнопкой мыши и выберите Add/Modify
- **Range=** 1 11 ("1"<пробел> "11")
- Modify
- Close
- 8. Найдем G-Code слово/значение, соответствующие режиму измерения в дюймах; изменим группу на G20 и G70

- В окне Word/Address, кликните правой кнопкой мыши, выберите Find
- На вкладке Macroname нажмите на поле под списком Macroname и введите "inch"
- Выделите UnitsInch в списке Macroname
- First
- Close
- Выделите UnitInch, нажмите правую кнопку мыши, выберите Add/Modify
- **Range**=20 70
- Modify
- Close
- 9. Точно так же сконфигурируем G21 и G71 для установки режима измерения в метрических единицах: в окне Word/Address выберем Word=G Range=21
 - Нажмите + слева от G21, чтобы развернуть ветку
 - Выделите UnitsMetric, нажмите правую кнопку мыши и выберите Add/Modify
 - **Range=**21 71
 - Modify
 - Close

10. Сконфигурируем "М5" для выключения охлаждения после любого перемещения шпинделя

Найдите группу, содержащую "M5" - Condition=* * (вызывает ActiveSpindleOnOff)

- Выделите * *, кликните правой кнопкой мыши и выберите Add/Modify
- Macroname=CoolantOff
- Process After Motion
- Add
- Close
- 11. Сохраним новую конфигурацию системы управления в новом Control файле, затем закроем окно Word/Address
 - В окне Word/Address выполните File > Save As
 - Shortcut=Working Directory
 - File Name=my_configured_control.ctl, Save
 - File > Close

12. Сбросим и обработаем модель

- Reset Model 📤
- Play to End

На этом уроке вы получили опыт конфигурирования системы управления, увидели, как G-Code слова и форматы данных будут обработаны by NC machining center. Нами были изменены определения слов и групп для обработки таких условий, как: различия форматов слов, Unaccounted for специальных символов, которые выполняют NC функции управления, различия в действиях, выполняемых определенными G-Code словами/значениями, адресация неподдерживаемых G-Code слов/значений. Эти изменения мы затем сохранили в Control файле.

Настройка системы ЧПУ для вывода сообщений об ошибках

Этот урок показывает, как настроить файл системы управления для генерации сообщений об ошибках в журнальный файл. Во время работы токарно-фрезерного станка очень важно быть уверенным, что ось C-axis должна быть разжата при работе в токарном режиме и наоборот зажата, когда работаем во фрезерном режиме. Подобная технология может быть использована для обнаружения таких потенциально опасных условий:

Coolant On или Off

Блок "Cutter compensation on" не должен содержать Z-axis движения

В этом уроке используются переменные для установки и проверки состояния зажатия оси С. Специальные проверки, которые добавляются в стандартные описания (M03, M04) для проверки состояния зажатия оси С.

1. Откроем файл проекта "custom_control.vcproject"

- Запустите VERICUT
- File > Open
- Shortcut = Training
- **File** = custom_control.VcProject

2. Добавим слово "Сlamp" как имя переменной

- Configuration > Word Format
- Add
- Name=clamp
- Type=Special
- Sub-type=Variable Name
- OK

3. Определим Clamp и Unclamp для М35 и М36 соответственно

- Configure > Word/Address
- Разверните **M_Misc**
- Разверните М 35 36 и выделите IgnoreMacro
- Дважды кликните на IngnoreMacro
- Word=M
- Range=35
- Выберите Variable
- Variable Name=clamp
- Variable Description = C-axis Status
- Override Value=1
- Modify
- Change Range = 36
- Variable Name=clamp
- Override Value=0
- Add, Close

4. Проверим статус C-axis вращения при встрече с М03

- Разверните **M3** и выделите * *
- Нажмите правую кнопку мыши и выберите Add/Modify
- Word=M, Range=3
- Under Conditions; Add
- Type=Variable
- Condition=clamp, Conditional Value=1
- В окне под списком Macro напишите "err"
- Выберите ErrorMacro из списка

- **Override Text=** ERROR! C-axis is Clamped
- Add, Close
- File > Save As > my_custom_control.ctl

5. Установим VERICUT на останов после каждой ошибки

- В главном меню выберите 🖡
- Установите Stop At Max Error = 1
- OK

6. Запустим симуляцию

- Reset Model 📤
- Play to End

Определение параметров оптимизации

Этот урок показывает, как использовать функцию **Tool Manager** для определения записи OptiPath, требуемой для оптимизации обработки инструментальной стали. Параметры оптимизации основаны на уже известных успешных условиях обработки. OptiPath разместит результаты работы в новой (скорректированной) УП.

1. Откроем файл проекта optipath_parameters.vcproject

- Запустим VERICUT
- File > Open
- Shortcut = Training
- **File** = optipath_parameters.VcProject
- Установим Working Directory
- Отобразим **Project Tree** PE
- B Project tree выделите Setup: 1, кликните правой кнопкой мыши, выберите Expand All Children

2. Определим параметры оптимизации для инструмента #1

Описание: .625 dia. 4 flute carbide flat end mill

Действие: planar milling not to exceed .5" depth, 1200 RPM

Скорость подачи для этого инструмента будет устанавливаться из известного успешного условия обработки: assume the cutter is successful cutting full width in .3" depth passes at 8 IPM feedrate. Скорость подачи, используемая для ввода материала, не должна быть больше, чем 8 IPM.

- В Project tree дважды кликните на **Tooling : optipath_parameters**
- Выделите 👎 1, Add > OptiPath > New...
- **Material** = H13 Tool Steel
- **Machine =** 3 axis mill
- Axial Depth=0.3 (значение может быть установлено бегунком или вводом значения с клавиатуры)
- Radial Width=.625
- Feed Per Minute=8
- Spindle Speed=1200
- Установите Spindle Speed (этот параметр будет так же корректироваться с учетом заданных условий для подачи)

Под этими условиями определена частота Volume Removal – 1.5 кубических дюйма в минуту

3. Выберем для оптимизации "Constant Volume" и используем скорость обработки на воздухе 150 IPM

- Установите Volume Removal
- CHUMUTE Air Cut Feed Rate: "Default"
- Введите Air Cut Feed Rate=150
- Add

😡 OptiPath ID:	.625D 2.0H 1.5 FL Flat End Mill			
Description: Material:	.625D 2.0H 1.5 FL Flat End Mill		Π	
Machine:	3 axis mill 👻	_		_
Unit Power Accel/Decel	1 HP/in^3/min Off v			
[=	Constant Volume Method: Feed constant Volume Removal rate, o	per Minute is adjust lepending on the cu	ed to mainta tter contact	ain a area.
Feed/Speed	Avial Depth		0.2	inch
Settings	Radial Width		0.5	inch
Hard Materia	Feed per Minute		8	IDM
Spindle	Feed per Tooth		0.0033	inch
Plunge		_	0.0000	Intern
Entry/Exit	- Optimization Method		0.0000	
Angle	Chip Thickness		0.0033	inch
Depth Table	Volume Removal		1.5	in^3/min
Width Table	Spinale Speed		1200	RPIVI fact/main
	Surface Speed	· · · · · · · · · · · · · · · · · · ·	190	
	Air Cut Feed Bate	Default	1.0	
	☐ Optimize by Tables	Fill	130	
	Add	lodify	Close	e

4. На вкладке Optimization Settings определим настройки для следующих условий:

- Вкладка Settings
- Add More Cuts
- Очистите все **Default checkboxes** (4 шт.)
- Minimum Feedrate Change=3 (требуется для обработки по-разному оптимизированной подачи)
- Clean-up Feedrate=85
- Circle Feedrate=Optimize
- Minimum Cut Feedrate=1
- Maximum Cut Feedrate=80

5. Настроим "Entry Feedrate" для ввода материала с 8 IPM подачей

Инструмент снизит скорость до .1 перед контактом с материалом, затем будет удерживать пониженную подачу, до тех пор, пока находится в материале

- Вкладка Entry/Exit
- Entry Feedrate=Feed/Minute: 8
- Clearance Distance= 0.1
- Cut Distance=0.1
- Modify, Yes

6. Проверим, как будет выполняться оптимизация под разными условиями обработки

Проверка должна показать, что оптимизация будет выполняться так, как запланировано. Если будут получены неудовлетворительные результаты, изменим параметры оптимизации и протестируем ее снова до получения удовлетворительных результатов.

- Вкладка Feed/Speed
- Введите разные значения глубины и ширины обработки, затем наблюдайте за оптимизированными значениями Feed per Minute и Feed per Tooth

Например:

Axial	Depth=.1	и Radial	Width=.625
. Allerer	Depm1	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

=> (Feed per Minute= 24)

Axial Depth=.1 и Radial Width=.5

=> (Feed per Minute= 30)

- 7. Закроем панель OptiPath
 - Close

Настройка параметров оптимизации для .750 dia. Ball End Mill:

8. Определим параметры оптимизации для инструмента #2

Описание: .75 dia. 4 flute carbide ball end mill

Действие: semi-finish profile milling (kellering/lacing)

The подсвеченные участки, выполняемые этим инструментом, будут оптимизированы постоянным значением, скомбинированным с толщиной стружки. Этот метод оптимизации изменяет подачу и объем снимаемого материала в минуту.

- Выделите **†** 2, выполните Add > OptiPath > New...
- **Material** = H13 Tool Steel
- Machine = 3 axis mill
- Axial Depth=1 (значение может быть установлено бегунком или вводом значения с клавиатуры)
- Radial Width=.125
- Feed Per Minute=12
- Spindle Speed=1200
- Check Spindle Speed
- 9. Сконфигурируем OptiPath параметры для этого инструмента точно так же, как и для предыдущего инструмента, исключая оптимизацию "Constant Volume" и "Constant Chip Thickness
 - Установите Volume Removal (1.497 cubic inch/minute)
 - Установите Chip Thickness (.0037' chip/tooth load)
 - Add

10. На вкладке Optimization Settings определим параметры для следующих условий:

- Вкладка Settings
- Add More Cuts
- Снять все **Default checkboxes** (4 шт.)
- Minimum Feedrate Change=3 (требуется для обработки по-разному оптимизированной подачи)
- Clean-up Feedrate=85
- Circle Feedrate=Optimize
- Minimum Cut Feedrate=1
- Maximum Cut Feedrate=80
- Modify, Yes
- Close
- 11. Coxpanum Tool Library с параметрами OptiPath
 - File > Save As...
 - Shortcut = Working Directory

- **File** = optipath1.tls
- Save
- File > Close, Yes
- 12. Оптимизируем NC программу с OptiPath
 - OptiPath > Control...
 - OptiPath Mode = On
 - Material = H13 Tool Steel
 - Machine = 3 axis mill
 - OK

13. Во время обработки будем наблюдать за оптимизацией в окне Status

?

- Info > Status
- Play to End

Time 🤇	55.8247
Feedrate	10 IPM
Spindle	1200,CW
Coolant	
OptiPath Time 🔇	29.9651
OptiPath Feed	200.00
OptiPath Spindle	1202

Улучшение на 46%

Reset the VERICUT	cut model and Replace
current NC pro	gram files with the
optimiz	zed files?
Yes	No

X

• No

- 14. Выход из VERICUT
 - File > Exit
 - Ignore All Changes

Вывод

Этот урок продемонстрировал, как создавать библиотеку OptiPath, которая может быть использована для оптимизации обработки различными инструментами.

Оптимизация для различных материалов

Нередко обрабатывающий инструмент используется для обработки различных материалов. Подача, необходимая для обработки стали, весьма отличается от подачи для алюминия. В Tool Library можно сохранить параметры OptiPath для множества материалов. На этом уроке мы будем использовать одну и ту же Tool Library для оптимизации двух материалов.

1. Откроем файл проекта optimize_h13_steel.vcproject

- Запустите VERICUT
- File > Open
- Shortcut = Training
- **File** = optimize_h13_steel.vcproject
- Отобразите **Project Tree P**E

2. Откроем Tool Manager и просмотрим все записи OptiPath

- **Project** > Tools
- Edit > Search OptiPath...
- Material = H13 Tool Steel
- Search

😡 Search Op	tiPath record						
Libraries					۲	Files O Directories	Browse
multiple_ma	terials.tls						
Description		~	Mater	rial H13 Tool Steel	✓ Ma	achine 3 axis mill	~
		Search		Sh	ow All		
Material		Machine		Description		Tool Referenced	
H13 Tool St	eel	3 axis mill		.625D 2.0H 1.5 FL FI	lat End	1	1
H13 Tool St	eel	3 axis mill		.750D 2.0H 1.5 FL B	EM	2	
-	Add/Modify	Reference		Delete		Close	

- Material = Alunimum
- Search

🔙 Search OptiPath record			X
Libraries		۲	Files O Directories Browse
U:\ProdMarketing\60Training	y\33_optimize_different_materials	s\multiple_materials.tls;	
Description	✓ Mate	erial Aluminum 🛛 🖌 Ma	achine 3 axis mill 🛛 🖌
	Search	Show All	
Material	Machine	Description	Tool Referenced
Aluminum	3 axis mill	.625D 2.0H 1.5 FL Flat End	1
Aluminum	3 axis mill	.750D 2.0H 1.5 FL BEM	2
Add/Modify	Reference	Delete	Close

• Close

Tool Library содержит параметры оптимизации H13 Tool и из стали, и из алюминия, но активными могут быть параметры только для одного материала:

ID	Description	Units	Gage Point	Teeth	Comm
₽ − † 1	.625D 2.0H 1.5 FL Flat End Mill	Inch	0 0 3.75	4	
Cutter1 Holder1	FLAT END (0.625 4)				
	REFERENCE "holder_22"				
⊡- 🛂 OptiPath	.625D 2.0H 1.5 FL Flat End Mill				
	Material=H13 Tool Steel, Machine=3 axis mill				
₽ ₽ 2	.750D 2.0H 1.5 FL BEM	Inch	0 0 3.25	4	
	Holder 22: #40, 0.750D tools, short	Inch	000		

Закроем Tool Manager

• File > Close

3. Включим OptiPath и выберем материал H13 Tool Сталь

- OptiPath > Control...
- **OptiPath Mode = ON**
- Material = H13 Tool Steel

Material	H13 Tool Stee	el 🖌	
Machine	H13 Tool Stee	əl	
	Aluminum		
Override Al	100		

• OK

Материал, выбранный в панели OptiPath Control, определяет, какая запись OptiPath будет активна.

4. Обработаем и оптимизируем NC программу до конца

- Info > Status
- Play to End
- No

OptiPath time is: about 30 minutes

- 5. Сброс обработки
 - Как только симуляция остановится, нажмите Reset Model 📤
- 6. Включим OptiPath и выберем материал Алюминий
 - OptiPath > Control...
 - OptiPath Mode = ON
 - Material = Aluminum
 - OK
- 7. Обработаем и оптимизируем NC программу до конца
 - Play to End
 - No

OptiPath time is: about 6 minutes due the higher federate

8. Выход из VERICUT

- File > Exit
- Ignore All Changes

Создание OptiPath записей во время построения списка инструментов

Этот урок покажет, как строить/изменять OptiPath библиотеку при построении списка инструментов (Tool List). NC программа, которая будет оптимизирована, использует два обрабатывающих инструмента – T1 и T2. Во время демонстрации вы увидите, как связать обрабатывающие инструменты NC программы с уже существующей OptiPath записью или созданной интерактивно в процессе сканирования VERICUT при построении списка инструментов.

1. Откроем файл проекта optimize_h13_steel.vcproject

- Запустите VERICUT
- File > Open
- Shortcut = Training
- **File** = optimize_h13_steel.vcproject
- Отобразите **Project Tree Р**Е
- 2. Создадим копию Tool Library в вашей рабочей директории
 - В Project Tree дважды кликните на **Пооling: multiple_materials.tls**
 - B Tool Manager, File > Save as...
 - Shortcut = Working Directory
 - File Name = session40.tls
 - Save
 - File > Close
 - Yes

3. В процессе построения списка инструментов привяжем OptiPath записи к обрабатывающим инструментам, используемым NC программой

Список инструментов может быть создан сканированием файла траектории движения инструмента. По умолчанию событие смены инструмента в списке представляется номерами обрабатывающих инструментов, используемых файлом траектории движения инструмента. Эти события могут быть также привязаны к OptiPath записям для оптимизации tool path. Когда активна настройка "**Prompt for OptiPath settings while building the tool list**", вы можете определить настройки OptiPath для обрабатывающих инструментов, которые будут оптимизированы.

- В Project Tree дважды кликните на NC Programs
- Tool Change By=List
- Use Tool list...
- Установите "Prompt for OptiPath settings while building the tool list"
- Build Tool List сканирует NC программу и генерирует лист инструментов

Появится панель Optimization Settings.

4. Привяжем первый инструмент к существующей OptiPath записи

В панели **Optimization Settings** для первого инструмента была найдена существующая запись. Мы будем использовать именно эту запись

• OK

Существующая запись OptiPath теперь выделена для этого инструмента и процесс продолжается.

- 5. Создадим новую OptiPath запись для второго инструмента
 - Измените описание записи Cutter= .750D 2.0H 1.5FL BEM, Carbide
 - Измените описание записи # Teeth= 4
 - Очистите поле Volume Removal
 - Очистите поле Chip Thickness
 - Измените значение Feed Per Minute=25
 - Установите Volume Removal
 - Установите Chip Thickness
 - OK

🙀 Tool Change List 🔀					
List Tool Change By Pocket Num.					
Event	Cutter ID	Holder ID	OptiPath Setting		
1	1	1	.625D 2.0H 1.5 FL Flat End Mill		
2	2	2	.750D 2.0H 1.5 FL BEM carbide		
Add]	Delete	Clear		
 ✓ Prompt for OptiPath settings while building the tool list. □ Skip Duplicate Cutter Descriptions 					
ОК		Build Tool List	Cancel		

Будет создана новая OptiPath запись, на которую будет указывать инструмент #2.

- Окно Tool Change List: OK
- Окно NC Program: OK
- 6. Используем OptiPath Control для создания оптимизированной траектории движения инструмента ''opti_list.opti''
 - OptiPath >Control...
 - **Optimized File**=opti_list.opti

Звездочка "*" может быть использована для сохранения имени файла NC программы при создании файла оптимизированной траектории движения инструмента, имеющего расширение ".opti".

- OptiPath Mode = On
- **ОК** (Обратите внимание, что красный цвет "OptiPath" в главном окне VERICUT указывает на то, что оптимизация включена)
- 7. Откроем окна Status и Tool Use Graph
 - Info > Status
 - Info > Graph
 - Установите **Tool Use**
 - Time Interval = 60

Во время обработки поле **Feedrate** отображает запрограммированные скорости подачи, а поле **OP Feedrate** – оптимизированные скорости подачи.

Обработаем и оптимизируем NC 🛃 Graphs - optipath_parameters.mcd 8. программу до конца Time Interval 60 /2 x2 😭 省 Tool Use Play to End Time O 60 No 1 Optimized 1 Cutting Conditions

9. Выход из VERICUT

- File > Exit
- Ignore All Changes

Вывод

На этом уроке мы увидели, как создаются записи OptiPath для каждого инструмента в процессе создания списка инструментов.

Урок 41

Создание OptiPath записей через напоминание во время обработки

Этот урок показывает, как создавать/изменять библиотеку OptiPath интерактивно в процессе обработки детали. NC программа, которая будет оптимизирована, использует 2 обрабатывающих инструмента: T1 и T2. Во время демонстрации вы увидите, как связать уже существующие в NC программе обрабатывающие инструменты с существующими OptiPath записями или созданными интерактивно в процессе обработки детали.

1. Откроем файл проекта optimize_h13_steel.vcproject

- Запустите VERICUT
- File > Open
- Shortcut = Training
- **File** = optimize_h13_steel.vcproject
- Отобразите Project Tree PE

2. Создадим копию Tool Library в вашей рабочей директории

- В Project Tree дважды кликните на <mark>Пооling: multiple_materials.tls</mark>
- B Tool Manager, File > Save as...
- Shortcut = Working Directory
- File Name = session41.tls
- Save
- File > Close
- Yes

3. Используем OptiPath Control для напоминания, чтобы при смене каждого инструмента выбрать или создать OptiPath запись и оптимизировать процесс

- OptiPath >Control...
- **Optimized File**=opti_list.opti

Звездочка "*" может быть использована для сохранения имени файла NC программы при создании файла оптимизированной траектории движения инструмента, имеющего расширение ".opti".

- OptiPath Mode = Prompt While Cutting
- **ОК** (Обратите внимание, что красный цвет "OptiPath" 👄 в главном окне VERICUT указывает на то, что оптимизация включена)
- 4. **Откроем окна Status и Tool Use Graph**
 - Info > Status
 - Info > Graph
 - Установите Tool Use
 - Time Interval = 60

Во время обработки поле **Feedrate** отображает запрограммированные скорости подачи, а поле **OP Feedrate** – оптимизированные скорости подачи.

5. Запуск симуляции

• Play to End

Панель Optimization Settings появится при первой смене инструмента.

10. Привяжем первый инструмент к существующей OptiPath записи

В панели **Optimization Settings** для первого инструмента была найдена существующая запись. Мы будем использовать именно эту запись

• OK

Существующая запись OptiPath теперь выделена для этого инструмента, и NC программа оптимизируется до следующей смены инструмента.

11. Создадим новую OptiPath запись для второго инструмента

- Измените описание записи Cutter= .750D 1.5FL BEM, Carbide
- Измените описание записи **# Teeth**= 4
- Очистите поле Volume Removal
- Очистите поле Chip Thickness
- Измените значение Feed Per Minute=25
- Установите **Volume Removal**
- Установите Chip Thickness

- OK
- No

6. Выход из VERICUT

- File > Exit
- Ignore All Changes

Вывод

На этом уроке мы увидели, как создавать OptiPath записи для каждого инструмента во время обработки и оптимизации.

Запуск оптимизации в режиме обучения

Оптимизация в режиме обучения позволяет вам создать запись оптимизации, основанную на условиях обработки, встречающихся в NC программе. Записи OptiPath создаются на основе максимального условия.

Откроем файл проекта learn_mode.vcproject

- Запустите VERICUT
- File > Open
- Shortcut = Training
- **File** = learn_mode.VcProject

Включим режим обучения

- OptiPath > Control...
- OptiPath Mode = Learn from NC Program
- **OK**
- Shortcut = Working Directory
- **File** = learn_opti.tls
- OK

Запустим NC программу до конца

• Play to End 🕨

Во время обработки детали условия обработки записываются, при этом создается OptiPath.

?	X
Tool library crea reset and optimize	ited. Automatically your NC program?
Yes	No

• Yes

Деталь будет обработана снова и оптимизирована вновь созданными OptiPath записями.

• No

Просмотрим улучшения в цикле

• Info > Status

Status	🖆
Program	blade.MPF
Tool Sequence	1
Feedrate	300 MMPM
OptiPath Feed	5080.00
Time	157.7475
OptiPath Time	54.458
Motion Type	LINEAR
Abs/Inc	ABSOLUTE
Units	METRIC
Cvcle	OFF

Выход из VERICUT

- File > Exit
- Ignore All Changes

Создание кинематики токарного станка

Этот урок покажет вам, как конфигурировать файл VERICUT станка, который описывает 2-х осевой токарный станок, а затем сконфигурировать симуляцию NC программы, назначенной для этого станка. 2-х осевой токарный станок управляется системой управления Fanuc 16T.

Ноль станка расположен по центру плоскости шпинделя. Станок, показанный выше, имеет точку привязки: **X12.0 Z14.0**

1. Запустим новый Inch User файл

- Запустите VERICUT
- File > New Project > Inch
- Отобразите Project Tree PE

2. Откроем систему управления Fanuc 16T

- B Project tree выделите Setup: 1, нажмите правую кнопку мыши и выберите Expand All Children
- В Project tree выделите 🕏 Control, нажмите правую кнопку мыши и выберите 📛 Open...
- Shortcut = Library
- File = fan16t.ctl, Ok

Следующие шаги определяют компоненты с "Base" в "Tool". Компоненты, которые будут определены на стороне инструмента станка: Base > Z > X > Tool

3. Отобразим Component Tree

• Configuration > Component Tree

- 4. Добавим "Z" в "Base"
 - Выберите Base в Component Tree
 - Нажмите правую кнопку меню на Base

• Append > Z Linear

🗽 Compo	nent Tree	×
File Edit	Component	
🗏 🖉 🖶 🕹	dia Component Attributes]
	🐰 Cut	ļ
	🖻 Сору	X Linear
	🐴 Paste	Y Linear
	× Delete	Z Linear
	Rename	A Rotary
	Insert >>	B Rotary
	Annend	C Rotary
	Vicibility	U Linear
	visionity ,	V Linear
		W Linear
		A2 Detany

- 5. Добавим "Х" в "Z"
 - Выделите Z в Component Tree
 - Нажмите правую кнопку мыши на Z
 - Append > X Linear

6. Добавим "Tool" в "X"

- Выделите X в Component Tree
- Нажмите правую кнопку мыши на Х
- Append > Tool

Следующие шаги определяют компоненты с "Base" в "Stock". Компоненты, которые будут определены на стороне заготовки станка Base > Spindle > Fixture > Stock > Design

- 7. Добавим "Spindle" в "Base"
 - Выберите Base в Component Tree
 - Нажмите правую кнопку меню на **Base**
 - Append > Spindle

Примечание: Компоненте Spindle указывает, что присоединенная заготовка будет вращаться.

8. Coeдиним "Attach" с "Spindle"

- Выделите Attach в Component Tree
- Перетащите левой кнопкой мыши Attach на Fixture

Component Tree
File Edit Component
 Base (0, 0, 0) Jaze (0, 0, 0) Jaze (0, 0, 0) Tool (0, 0, 0) Spindle (0, 0, 0) Attach (0, 0, 0) Attach (0, 0, 0) Stock (0, 0, 0) Stock (0, 0, 0) Design (0, 0, 0)

- 9. Сохраним файл станка "2axturn.mch"
 - B окне Component Tree выполните File > Save As
 - Shortcut=Working Directory
 - File Name=2axturn.mch, Save
- 10. Установим начальную позицию станка, основываясь на информации, указанной на чертежах станка
 - В Project tree выделите Wachine: 2axturn, кликните правой кнопкой мыши и выберите Machine Settings
 - Вкладка **Tables**
 - Add/Modify
 - Table Name = Initial Machine Location
 - Values= 12 0 14
 - Add, Close
 - OK

11. Определим модели для оснастки и заготовки

Настройка оснастки:

- Configuration > Component Tree Fixture (0, 0, 0), нажмите правую кнопку мыши, Component Attributes, вкладка Model
- Type=Model File
- Browse...
- Shortcut=Training
- File Name=mcdmturn.fxt, Open
- Add
- Color = Inherit
- Selected =
- Position Tab
- **Position=**0 0 4.2

• Apply

Настройка заготовки:

- Active Component=Stock
- Вкладка Model
- Type=Cylinder
- Height=2.1, Radius=1.1
- Add
- Color = Inherit
- **Position** tab
- **Position=**0 0 4.2
- OK
- 12. Изменим ориентацию на более соответствующую для симуляции обработки на токарном станке
 - B Workpiece нажмите правую кнопку мыши, выберите Select View > H-ISO

- 13. Сконфигурируем для симуляции пример NC программы "mcdturn.mcd"
 - В Project tree выделите NC Programs, нажмите правую кнопку мыши, выберите ∎ Add/Modify NC Programs...
 - Add...
 - Shortcut=Training
 - File Name=mcdturn.mcd, OK
 - OK

14. Сконфигурируем файл "mcdturn.tls" для извлечения из Tool Library данных об инструменте

- В Project tree выделите 🔀 Tooling, нажмите правую кнопку мыши, выберите 🖾 Open
 - Shortcut=Training
 - File Name=mcdturn.tls, Open
- 15. Выполним сброс обработки, чтобы убедиться, что VERICUT применит изменения в файлах станка и системы управления
 - Reset Model 📥
- 16. Обработаем модель
 - Play to End
- 17. Сохраним файл проекта
 - File > Save As
 - Shortcut=Working Directory
 - File Name=2axturn.vcproject, Save
- 18. Выход из VERICUT
 - File > Exit
 - Ignore All Changes

Вывод

На этом уроке мы сконфигурировали 2-х осевой токарный станок с системой управления Fanuc. Мы симулировали пример обрабатывающей траектории движения инструмента в G-Code, используя инструмент, извлеченный из существующей VERICUT библиотеки инструментов.

